[首頁] [履歷] [研究] [著作摘要]
[地址] [學歷] [工作經歷] [參與計畫] [著作]


專長及研究方向

建築省能設計 空調通風系統 室內空氣品質
  • 建築外殼熱性能
  • 建築物理環境
  • 建築耗能模擬與分析
  • 風管設計
  • 排煙系統
  • 系統模擬與最佳化
  • 變風量空調系統
  • 二氧化碳通風控制
  • 新鮮外氣控制
  • 室內空氣品質標準

研究計畫

  1. 應用蒸發冷卻於建築物外殼以降低熱負荷之研究,行政院國家科學委員會,2000-2003。
  2. 建築空調系統考慮間隙風與區間氣流之最低外氣需求量計算,行政院國家科學委員會,1999-2000。
  3. 防災國家型科技計畫,行政院國家科學委員會,1997-1998。
  4. VAV System Ventilation: Control Strategy Economics
    The Trane Co., La Crosse, WI, 1994-1996.
  5. Real-Time Optimization of Ventilation Control to Minimize Energy Consumption in Variable Air Volume Systems, Pennsylvania Energy Development Authority, Project No. 93-017, 1995.
  6. 臺灣地區建築物 外周區年間熱負荷分析與設計手冊製作之研究
    經濟部能源委員會研究計畫,計畫編號 79211,1989-1990。
  7. 臺灣地區建築物內遮陽及化學除濕空調系統省能設計研究
    經濟部能源委員會研究計畫,計畫編號 78211,1988-1989。

計畫報告摘要

  1. VAV System Ventilation: Control Strategy Economics
    prepared by S. A. Mumma, Yu-Pei Ke, and S. P Sevigny
    sponsored by The Trane Co., La Crosse, WI, 1994-1996.

    The concern over the perception that the US energy supply is bounded led building mechanical system engineers to take many measures to reduce energy consumption in buildings since the 1970's. Among the measures was a significant reduction in the ventilation air provided to building occupants. As a result a whole host of building induced illnesses surfaced. In response, ASHRAE developed Standard 62-1989 "ventilation for acceptable indoor air quality". The standard set a ventilation rate per person which went counter to the energy concerns of the day. Ever since engineers and researchers have been seeking the best ways to provide acceptable IAQ with minimal energy consumption.

    The piece of research presented in this report provides an automatic control approach to ameliorating the conflict between energy use and acceptable IAQ in buildings served with variable air volume mechanical systems. Eight control strategies are investigated, and the resultant quantitative measure of IAQ and energy consumption documented. Several of the controls employ optimization techniques in real time to achieve the desired results. The research consists of 2 major portions, an analytical piece and an experimental field evaluation piece.

    In both the analytical and experimental pieces of the research, a Central Pennsylvania library building was used as the focus of the work. Detailed models of the building and its mechanical systems were developed. The models were used to simulate, on an hourly basis for an entire year, the building and its systems located in 6 different geographic locations and operating under each of the 8 control approaches. Three of the best control approaches, each able to meet the ventilation requirements at acceptable energy consumption levels, was implemented into the library building and data collected under various weather conditions to confirm the analytical predictions.

    The analytical results reveal that the control which optimizes outdoor air flow and supply air temperature resulted in minimum energy consumption and energy demand while providing acceptable IAQ. The analytical work was confirmed by the field study.


  2. Real-Time Optimization of Ventilation Control to Minimize Energy Consumption in Variable Air Volume Systems
    prepared by S. A. Mumma and Yu-Pei Ke
    sponsored by Pennsylvania Energy Development Authority, Project No. 93-017, 1995.

    This energy improvement research project explored the potential to simplify the real-time on-line optimization control for building variable air volume (VAV) mechanical systems. The research was undertaken in the context of the AMP Headquarters building located in Harrisburg, PA. The research revealed that in the AMP building 27% of the zones were never critical and could thus reduce the complications of the control. It was further found that by forcing some critical zones to be non-critical (accomplished by elevating the VAV box minimum primary airflow rate settings) the system could be further simplified with 39% of the zones now non-critical without an increased energy penalty or indoor air quality (IAQ) problem. Forcing more zones to never be critical rapidly caused the energy advantages the real-time on-line optimization control to decrease. The team is interested in continuing this research by moving from the analytical to experimental phase.

    A complete implementation of the real-time on-line optimization control in commercial buildings employing VAV air-conditioning systems, to minimize energy demand and consumption while meeting the strict IAQ standards required by ASHRAE Standard 62-1989, is estimated to result in Pennsylvania energy savings in excess of $40 million per year when compared to other possible ways of meeting the standard. An incalculable improvement in worker productivity and a reduction in costly litigation from sick building syndrome is also expected.


  3. 臺灣地區建築物外周區年間熱負荷分析與設計手冊製作之研究
    計畫主持人:楊冠雄林憲德,研究員:柯佑沛、黃瑞隆、涂金龍
    經濟部 能源委員會研究計畫,計畫編號 79211,1989-1990。

    本報告從動態 (Dynamic) 熱傳理論出發,並配合臺灣地區的平均氣象年資料 (Average Year Weather Data),來探討廣受東南亞國家採用之建築省能基準 OTTV (Overall Thermal Transfer Va1ue),計算出臺灣地區採用 OTTV 公式時各參數之合宜值。並進一步延續原本是熱得指標的 OTTV 計 算方式,新創另一建築外殼省能基準 ECLV (Envelope Cooling Load Value),作為空調負荷省能指標,此外,並引入日本 PAL (Perimeter Annual Load) 的觀念,以林氏簡算法計算其值。本文 將此三種指標,利用亙交表計算出三者在臺灣地區的理論值,與 46 棟具代表性之既存建築實際值。兩者加以比較,以供基準值訂定之參 考。

    三種指標中,以 PAL 所考慮的最為周詳,採用其作為建築的省能指 標最為準確。但 OTTV和 ECLV 仍有計算方便上的優點,且相富適合 作為小型住宅的能源指標。本文所提出新的建築外殼省能指標 ECLV ,在理論基礎上比 OTTV 更完備,可取代 OTTV作為建築外殼省能基 準。

    本年度計劃完成 OTTV 與 ECLV 適用于臺灣地區建築使用的系統化研 究。同時完成了 PAL於國內的氣象條件下採行的可行性分析。下一年 度後續計劃中,將繼續對 PAL 於臺灣地區之應用作深一層的系統化研 究。並將其計算、設計所須採用之圖、表、公式完主電腦化,以整理 成為設計手冊。便於設計階段即可參考,而得節約能源效果。


  4. 臺灣地區建築物內遮陽及化學除濕空調系統省能設計研究
    計畫主持人:楊冠雄林憲德,研究員:黃瑞隆、柯佑沛、梁雄津
    經濟部 能源委員會研究計畫,計畫編號 78211,1988-1989。

    本研究為經濟部能源委員會贊助本研究小組從事有關建築省能長期研究 的第三期計劃。研究主題為(1)屬于誘導式設計 (Passive Design) 手法的建築物內遮陽對空調耗能之省能效果及(2)屬于機械式設計 (Active Design) 的化學除濕轉輪所組成之空調系統之省能效果。

    計劃的進行,首先就「內遮陽」部分作分析。經由動態空調負荷計算程 HASP80M1,可解析內遮陽在高雄氣侯下對于空調耗能量在理論上之省能 效果。然後就高雄中山大學能源實驗屋之 A、B 兩室於 10、5、6 共三 個月聞之實測耗電量及氣象數據進行檢討與比較。發現理論預測之34.0% 、24.6%、31. 9%省能效果與實測之省能效果只有 13.5%、5.1%、8.8% 之相對偏差,可說是在工程裕度範圍內,結果令人滿意。以上實驗係著 箸意選取電腦輸人情況與實驗情況完全相同,以便能進行此項理論模式 印證之工作,證實了HASP在內遮陽省能效果上之可信度。接著,以 76 年計劃所完成的台北,台中,台南、高雄、台東,花蓮等六大都市之 「平均氣象年」,配合 HASP8001 程式來模擬各地內遮陽在全年中正常 空調狀況下的省能效果。結果發現,對國內六大都市氣候模擬之情況而 言於一般辦公大樓之空調負荷型態下,全年內遮陽之省能效果只為 2. 4% ~3.7%,效果不很顯著。與前期之「外遮陽」省能效果比較更顯得微小。 因此,亦可推論於台灣地區,吾人應大力推動建築之外遮陽設計手法。

    化學除濕系統方面,木研究之後半段主題。其進行亦先自理論分析出發, 然後輔以實體 Prototype 機型之製造,運轉與印證,結果也相當成功。 並發覺此化學除濕系統於台灣地區之氣侯條件下,有相當大的省能效果與 發展潛力,值得繼續作後續研究。

    理論方面,首先就化學除濕轉輪與濕空氣之熱傳與質傳現象之分析出發, 經由 Runge-Kutta數值分析結果,發現影響整個系統最重要的參數為外氣 溫濕度、輪盤轉速、通過風速及化學除濕劑之再生溫度。

    經實際製造一應用矽膠之化學除濕轉輪運轉結果與理論模擬結果比較,發 現二者之間的誤差在 10% 以內,因此成功地印證了本教學模式的可靠性。 緊接著,本化學除濕系統之其他重要元件,諸如熱輪熱交換器,經實驗結 果最高效率可達 83% 左右,轉速約在 12RPH ~16RPH 之間最合適,而蒸發 冷卻器,由於受台灣高適氣候的影響,其出口濕度一般約在23℃左右(濕 球溫度)。

    化學除濕系統的實驗、照原計劃只作一套「化學除濕轉輪與蒸發冷卻器偶 合」之複式系統實驗,理論與實驗對照結果,相對誤差僅在 8%~10% 左右 ,相當今人滿意。因此,行有餘力,又另行多製造了一套以「化學除濕轉 輪與傳統蒸汽壓縮冷凍主機組合」的複式系統。實驗結果與理論值比較相 對平均誤差約只在 5% 左右。是一非場令人滿意的結果。

    此證實後之模式旋即應用電腦模擬技巧,分析重省台北、台中。高雄、花 蓮四城市的使用情況,結果約有平均 20.5%~25.3% 之省電效果。此系統 若有輔以適當的混風方式,節能效果更大,值得吾人進一步作更長期之研 究與實際運轉效益評估。

歡迎來信: ypke@nkfust.edu.tw construction日期: 90.12.3

[地址] [學歷] [工作經歷] [參與計畫] [著作]
[首頁] [履歷] [研究] [著作摘要]