
7 Frequency-controlled induction motor drives

• The relationship between the synchronous 
speed and the frequency

• 7.2 Static frequency changes
• There are two types
direct: cycloconverters
indirect: a rectification and an inverter

P
f120n s

s =



• Cycloconverter drive



• PWM inverter



• Direct (cycloconverter): The output 
frequency has a range of from 0 to o.5fs. 
0.33fs for better waveform control.

• Indirect: broadly classified depending on 
the feeding source, voltage or current source

• Variable-voltage, variable-frequency drive



• Regenerative voltage-source inverter-fed ac 
drive



• Current-regulated voltage-source-driven drive



• Current-source inverter-driven drive



• Classification of frequency changer



7.3 Voltage-source inverter
• A half-bridge modified McMurray inverter.



• Snubbers: across transistors or SCR to limit 
dv/dt and its effects.

• (a) Half-bridge inverter charging 



• (b) Half-bridge inverter communication



• The frequency of the load voltage is 
determined by the rate at which T1 and T2
are enabled.

• A full-bridge inverter



• Voltage-source inverter with transistors



7.4 Voltage-source inverter
• A generic self-communicating inverter



• The gating signals and the line voltage



• The line voltage in term of the phase voltage
Vab = Vas - Vbs

Vbc = Vbs - Vcs

Vca = Vcs - Vas

• We can obtain
Vab - Vca = 2Vas - (Vbs + Vcs)

• Because a three-phase system is balance,
Vas + Vbs + Vas = 0.



• Then, we have
Vab - Vca = 3Vas

• That is,
Vas = (Vab - Vca)/3 

• Similarly,
Vbs = (Vbc - Vab)/3
Vcs = (Vca - Vbc)/3



• These periodic voltage waveforms (in 
Fourier components) have the following

• The fundamental rms phase voltage for the 
six-stepped waveform is
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• 7.4.2 Real power
Pi = VdcIdc = 3VphIphcosφ1

⇒ Idc = 1.35Iphcosφ1

• 7.4.3 Reactive power
Qi = 3VphIphsinφ1

• 7.4.4 Speed control
• The air gap induced emf

E1 = 4.44kω1φmfsT1



• Neglecting the stator impedance, Rs+jX1s

Vph ≅ E1

• The flux is then written as 

where Kb = 4.44kω1T1

• If Kb is constant
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• A number of control strategies about the 
voltage-to-frequency ratio:

(i) Constant volts/Hz control
(ii) Constant slip-speed control
(iii) Constant air gap flux control
(iv) Vector control
• 7.4.5 Constant volts/Hz control
• Relationship between voltage and frequency

Vas1 = E1 + Is1(Rs + jX1s)



• Equivalent circuit of the induction motor



• The phase voltage in p.u.
Vasn = E1n + Is1n(Rsn + jX1sn)

• The p.u. fundamental input voltage
Vasn = IsnRsn + jωsn(λmn+L1snIsn) (p.u.)

• The normalized input-phase stator voltage

• The relationship between the applied phase 
voltage and frequency (for law performance)
Vas = Vo +Kvkfs

where Vo = Is1Rs
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• Because of
Vas = 0.24Vdcn, Von = Vo/Vb, and
E1n = E1/Vb = Kvffs/Kvffb = fsn,
we have
Vdcn = 2.22{Von + fsn}



• Implementation of volts/Hz strategy



• Closed-loop induction motor drive constant 
volts/Hz control strategy



• 7.4.6 Constant slip-speed control
• Places the drive operation on the static 

torque-speed characteristic
• The speed of the induction motor
ωs = ωr + ωs1

• The slip is obtained as
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• Constant-slip-speed strategy( one-quadrant)



• Simplified equivalent circuit considered for 
the steady state analysis 



• The rotor current

• The electromagnetic torque
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• Torque vs. applied voltage for various slip 
speed



• 7.4.7 Constant air gap flux control
• Equivalent separately-excited dc motor in 

terms of its speed but not in terms of 
decoupling of flux and torque channel.

• Constant air gar flux linkages

• The electromagnetic torque
s
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• Drive strategy for constant-air gap-flux-
controlled induction motor drive



• 9.4.7 Control of 
harmonics

• Sinusoidal pulse-
width modulation



• The switching logic for one phase

• The fundamental of this midpoint voltage
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• 7.4.10 Steady-state evaluation with PWM 
voltage

• PWM voltage generation

where n is the ratio between the carrier and 
modulation frequencies, t(i) is ith pulse width, 
m is the modulation ration, fc is the carrier 
frequency.
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• The pulse widths in electrical radians
pw(i) =t(i)fs, rad
where fs is the modulation frequency.

• (see the table on pp. 370)
• The d and q axes voltages
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• The model in the stator reference frames
V = (R+Lp)i + Gωri
V = [vas vds 0  0]t

i = [iqs ids iqr idr]t
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• State-space form

where A = -L-1[R+ωrG]
B = L-1

X = i
u = V
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• Direct evaluation of steady-state current
• The solution of current vector

• Discretization

• The kth sampling interval
X(k+1) = ΦX(k) + Fu(k)
where Φ = eATs and F = (Φ - I)A-1B
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• X(k+1) = X(0) (if k+1 = 360 electrical 
degrees)

• The steady-state initial vector

• Steady-state performance

ias(k) = iqs(k)
ibs(k) = -0.5iqs(k) - 0.866ids(k)
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7.5 Current-source ...

• Torque is directly related to the current 
rather than voltage.

• 7.5.2 ACSI (Autosequentially commutated 
Current-source Inverter)

• The inductor is provided to maintain the dc 
link current at a steady value.



• Current-source induction motor drive



• Commutation



• Stator current in a star connection



• Forward motoring



• Regeneration



• 7.5.3 Steady-state performance
• Equivalent circuit approach



• The rotor and magnetizing currents

where 
• The electromagnetic torque
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• The maximum torque occurs at
s = Rr/ωsLr

• Thus

• 7.5.4 Direct steady-state evaluation of six-
step current-source inverter-fed induction 
motor (CSIM) drive system
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• Stator currents:
(i) interval I: 0<θs<60°

ias = Idc; ibs = -Idc; ics = 0.
The quadrature axis stator current

similarly,
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(ii) interval II: 60°<θs<120°
The quadrature and driect asix stator currents

• The transformation matrix
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• Closed-loop system


