Airline Network Design

Ta-Hui Yang
Associate Professor
Department of Logistics Management
National Kaohsiung First Univ. of Sci. & Tech.

Airline Network Planning

- Airline Network planning tries to determine
 - Service network configuration
 - Flight route (delivering path)
 - Flow assignment

Network Configuration

- Network configuration
 - Point-to-Point (direct flight)

Network Configuration

Hub-and-Spoke

Combination of both

Network Configuration

Coexistence of both

Flight Routes

- Flight route
 - Determine the routes (or paths) to deliver for every OD
 - Direct flight or non-stop flight

Flight Routes

- Hub-connected flight
 - rare to have more than two hub stops in practice, especially in the air passenger market

two-hub-stop

Tool for Airline Network Planning

- Tool: Mathematical Model
 - Objective: usually try to minimize the total cost
 - Cost
 - Fixed cost: hub setup cost
 - Variable costs: transportation cost and....
 - Maximize profit: more complicate because it would relate to pricing policy.
 - o pricing in air market is dynamic and complicate task: Revenue Management.

Network Planning Model

Given

- nodes (airports): location
- OD demand
- Costs
- Flight distance (if necessary)

Determine

- Network configuration
- Number of hubs and location
- Paths
- Flows

Subject to $x_{ij} + \sum_{k \in N} \sum_{t \in N} x_{iktj} = 1, \forall i, j : i \neq j$	Flow conversation
$\sum_{i \in N} x_{ik} + \sum_{i \in N} x_{ki} \leq V(1 - s_k), \forall k : i \neq k$	Differentiate non- stop flights in hubs
$\sum_{t \in N} x_{kkti} + \sum_{t \in N} x_{itkk} \ge 2s_k , \forall i, k : i \ne k$	No two-hub-stop for hubs
$x_{kktt} \ge s_k + s_t - 1, \forall k, t : k \ne t$	Only non-stop between hubs
$v \left[\sum_{i \in N} \sum_{j \in N} \sum_{t \in N} \left(x_{iktj} + x_{itkj} \right) - \sum_{i \in N} \sum_{j \in N} x_{ikkj} \right] \ge s_k, \forall k : i \ne k, j \ne k$	Hubs need transshipment flows
$\sum_{i \in N} \sum_{j \in N} \sum_{t \in N} d_{ij} \left(x_{iktj} + x_{itkj} \right) - \sum_{i \in N} \sum_{j \in N} d_{ij} x_{ikkj} \le U_k s_k , \forall k : i \ne j$	Capacity constraint
$0 \le x_{ij} \le 1, \forall i, j : i \ne j$	
$0 \le x_{iktj} \le 1, \forall i, k, t, j : i \ne j$	
$s_k \in \{0,1\}, \forall k$	