Airline Network Design

Ta-Hui Yang
Associate Professor
Department of Logistics Management
National Kaohsiung First Univ. of Sci. \& Tech.

Airline Network Planning

- Airline Network planning tries to determine
- Service network configuration
- Flight route (delivering path)
- Flow assignment

Network Configuration

- Network configuration
- Point-to-Point (direct flight)

15 linkages

Network Configuration

- Hub-and-Spoke

o
- Combination of both

5 linkages
O
0
0O
\Rightarrow
O
0

Network Configuration

- Coexistence of both

Flight Routes

- Flight route
- Determine the routes (or paths) to deliver for every OD
- Direct flight or non-stop flight

$$
\text { (O) } \longrightarrow \text { (D) }
$$

Flight Routes

- Hub-connected flight
- rare to have more than two hub stops in practice, especially in the air passenger market
- one-hub-stop

- two-hub-stop

Tool for Airline Network Planning

○ Tool: Mathematical Model

- Objective: usually try to minimize the total cost
- Cost
- Fixed cost: hub setup cost
- Variable costs: transportation cost and....
- Maximize profit: more complicate because it would relate to pricing policy.
- pricing in air market is dynamic and complicate task: Revenue Management.

Network Planning Model

- Given
- nodes (airports): location
- OD demand
- Costs
- Flight distance (if necessary)
- Determine
- Network configuration
- Number of hubs and location
- Paths
- Flows

Minimize $z=\sum_{i \in N} \sum_{j \in N: j \neq i} d_{i j} c_{i j} x_{i j}+\sum_{i \in N} \sum_{j \in N: j \neq i} \sum_{k \in N} \sum_{t \in N} d_{i j} c_{i k t j} x_{i k t j}+\sum_{k \in N} f_{k} s_{k}$	
Subject to $x_{i j}+\sum_{k \in N} \sum_{t \in N} x_{i k t j}=1, \forall i, j: i \neq j$	Flow conversation
$\sum_{i \in N} x_{i k}+\sum_{i \in N} x_{k i} \leq V\left(1-s_{k}\right), \forall k: i \neq k$	Differentiate non- stop flights in hubs
$\sum_{t \in N} x_{k k t i}+\sum_{t \in N} x_{i t k k} \geq 2 s_{k}, \forall i, k: i \neq k$	No two-hub-stop for hubs
$x_{k k t t} \geq s_{k}+S_{t}-1, \forall k, t: k \neq t$	Only non-stop between hubs
$v\left[\sum_{i \in N} \sum_{j \in N} \sum_{t \in N}\left(x_{i k j}+x_{i k j}\right)-\sum_{i \in N} \sum_{j \in N} x_{i k k j}\right] \geq s_{k}, \forall k: i \neq k, j \neq k$	Hubs need transshipment flows
$\sum_{i \in N} \sum_{j \in N} \sum_{t \in N} d_{i j}\left(x_{i k j}+x_{i k t j}\right)-\sum_{i \in N} \sum_{j \in N} d_{i j} x_{i k k j} \leq U_{k} s_{k}, \forall k: i \neq j$	Capacity constraint
$0 \leq x_{i j} \leq 1, \forall i, j: i \neq j$	
$0 \leq x_{i k t j} \leq 1, \forall i, k, t, j: i \neq j$	
$s_{k} \in\{0,1\}, \forall k$	10

