Air Transport Demand

Ta-Hui Yang
Associate Professor
Department of Logistics Management
National Kaohsiung First Univ. of Sci. & Tech.
Air Transport Demand

- Demand for air transport between two cities or two regions depends on
 - Socio-economic characteristics of the regions
 - The characteristics of the transportation system that links them
Air Transport Demand

- Models to evaluate air transportation demand most often evaluate
 - The number of potential passengers
 - The number of passenger kilometers that can be achieved
 - The expected number of operations (take offs and landings)
 - A percentage share of the number of air passengers out of the total number of passengers
Air Transport Demand Estimation

- The process of forecasting transportation demand most often comprises the following steps:
 - Trip generation
 - Trip distribution
 - Modal split
 - Trip assignment
Classification: Competitive Mode

- Whether or not the model includes competitive modes of transportation
 - Models that are independent of the characteristics of alternative modes of transportation
 - Multimode models
Independent of Other Modes

- The airplane is the predominant mode of transportation on many long-distance traffic routes. Therefore, demand for air transportation on long-haul routes should be estimated independently of other modes of transportation.
Multimode

- Multimode models are primarily used to estimate demand for air transportation on short-haul routes.

- Air transportation demand on shorter routes is usually estimated simultaneously with the estimation of demand on other modes of transportation.
Classification: Macro vs. Micro

- Classification of air transportation demand model
 - Macroscopic models
 - Microscopic models
Classification: Macro vs. Micro

- Macroscopic models are used to estimate the development level of air transportation in a certain country or region
 - Estimate
 - The number of passengers
 - The number of airplane operations
 - The number of passenger kilometers
Classification: Macro vs. Micro

- Microscopic models estimate
 - Demand between two cities
 - The passenger traffic at an airport
 - The number of passengers along a specific route
 - The number of passengers in each class
Macroscopic Models

- Macroscopic Models: Demand is a function of time
 - Factors that affect the number of passengers are not taken into consideration
Macroscopic Models

$t : \text{time}$

$y : \text{the number of air passengers that changes over time}$

- **Model 1**

 $k, m, : \text{parameters}$

 $y = kt + m$

 - Model calibration : can be the least squares method
Macroscopic Models

- Model 2

\[y = a \cdot b^t \]

- logarithmic form

\[\log y = \log a + t \cdot \log b \]

- Advantage: \(a, b \) can be estimated using the least square method
Macroscopic Models

○ Model 3: modified exponential curve

\[y = k + a \cdot b^t \]

- When \(a < 0, b < 1 \)

- \(k \): fixed saturation level
Macroscopic Models

- Model 4: Gompertz curve

\[y = k \cdot a^{b^t} \]

- Logarithmic form

\[\log y = \log k + b^t \cdot \log a \]
Macroscopic Models

- When $\log a < 0, b < 1$

- k: saturation level
Macroscopic Models

- **Model 5: Logistic curve**
 - Logistic curve, or called Pearl-Reed curve
 \[
 y = \frac{k}{1 + b \cdot e^{-at}}
 \]
 - Has a shape similar to the Gompertz curve
Macroscopic Models

- The least squares method cannot be applied to estimate the parameters of:
 - Modified exponential curves
 - Pearl-Reed curve
 - Gompertz curve

- The three-point methods have proven very successful in estimation the parameters of these curves
Macroscopic Models

- Macroscopic models: Demand is a function of socio-economic characteristics
 - Dependent variables
 - The number of passengers
 - The number of operations
 - The number of passenger kilometers
 - Independent variables
 - Chosen from socio-economic characteristics and characteristics of the transportation system
Macroscopic Models

- Most often socio-economic
 - Population
 - National income
 - Personal consumption
 - Volume of trade
 - Number of tourist

- Most often transportation system
 - The cost of transportation
 - Speed / travel time
Macroscopic Models

Model:

\[m : \text{the total number of socio-economic characteristics} \]
\[n : \text{the total number of transportation system characteristics} \]
\[y_t : \text{the number of air passengers in time } t \]
\[S_{it} : \text{the value of the i-th socio-economic characteristics in time } t \]
\[T_{jt} : \text{the value of the j-th transportation system characteristics in time } t \]
\[a, b_i, c_j : \text{parameter} \]

\[y_t = a \prod_{i=1}^{m} S_{it}^{b_i} \prod_{j=1}^{n} T_{jt}^{c_j} \]
Macroscopic Models

- Logarithmic form

\[
\log y_i = \log a + \sum_{i=1}^{m} b_i \cdot \log S_{it} + \sum_{j=1}^{n} C_j \cdot \log T_{jt}
\]

- \(a, b_i, C_j\) parameters estimation:
 - Multiple regression technique
 - Maximum likelihood function
Trip Distribution

- Trip distribution models
 - When the total number of trips that a region can generate has been established, the trips are then distributed.
 - Trip distribution: establishes the number of trips between individual zones.

- Commonly used models
 - Entropy model
 - Gravity model
Trip Distribution

○ The Gravity model

 - an analogy to Newton’s Law of Gravity

\[f_{ij} = k \frac{A_i \cdot B_j}{d_{ij}^2} \]

- \(f_{ij} \): the number of trips between city \(i \) and city \(j \)
- \(k \): constant
- \(A_i \): the “size” of city \(i \)
- \(B_j \): the “size” of city \(j \)
- \(d_{ij} \): the distance between city \(i \) and city \(j \)
Trip Distribution

- A_i, B_j is most often taken as the number of emitted or attracted trips, i.e. $A_i = a_i, B_j = b_j$

- Problems in the original gravity model: not satisfied by the following flow conservation equations

$$\sum_{j=1}^{n} f_{ij} = a_i, \sum_{i=1}^{m} f_{ij} = b_j$$
Trip Distribution

- Modified Gravity model

\[f_{ij} = k_i \cdot a_i \cdot k_j \cdot b_j \cdot f(d_{ij}) \]

- \(k_i, k_j \): coefficients associated with the number of trips emitted or attracted by the cities
- \(f(d_{ij}) \): distance function, can be distance, travel time…etc., or a combination of different variables
Trip Distribution

Since \[\sum_{j=1}^{n} f_{ij} = a_i \]

\[\sum_{j=1}^{n} k_i \cdot a_i \cdot k_j \cdot b_j \cdot f(d_{ij}) = a_i \]

\[k_i = \frac{1}{\sum_{j=1}^{n} k_j \cdot b_j \cdot f(d_{ij})} \]

Similarly \[\sum_{i=1}^{m} f_{ij} = b_j \]

\[k_j = \frac{1}{\sum_{i=1}^{m} k_i \cdot a_i \cdot f(d_{ij})} \]
Multimode Models

- Multimode models
 - Aggregated models
 - Aggregated models take certain socio-economic characteristics into consideration.
 - Disaggregated models
 - Disaggregated models start with the individual as the one making the decision to travel and therefore operate with certain socio-economic characteristics related to the individual, obtained by surveying passengers.
 - Disaggregated models can also quantify the effect of comfort or the feeling of safety.
Multimode Models

- Aggregated models: abstract mode model
- Disaggregated models: choice models