Chapter 6

6.1 a Relative frequency approach
b If the conditions today repeat themselves an infinite number of days rain will fall on 10% of the next days.
6.2 a Subjective approach
b If all the teams in major league baseball have exactly the same players the New York Yankees will win 25\% of all World Series.
6.3 a $\{\mathrm{a}$ is correct, b is correct, c is correct, d is correct, e is correct \}
$\mathrm{b} P(\mathrm{a}$ is correct $)=\mathrm{P}(\mathrm{b}$ is correct $)=\mathrm{P}(\mathrm{c}$ is correct $)=\mathrm{P}(\mathrm{d}$ is correct $)=\mathrm{P}(\mathrm{e}$ is correct $)=.2$
c Classical approach
d In the long run all answers are equally likely to be correct.
6.4 a Subjective approach
b The Dow Jones Industrial Index will increase on 60% of the days if economic conditions remain unchanged.
6.5 a $\mathrm{P}($ even number $)=\mathrm{P}(2)+\mathrm{P}(4)+\mathrm{P}(6)=1 / 6+1 / 6+1 / 6=3 / 6=1 / 2$
b $\mathrm{P}($ number less than or equal to 4$)=P(1)+P(2)+P(3)+P(4)=1 / 6+1 / 6+1 / 6+1 / 6=4 / 6=2 / 3$
c $\mathrm{P}($ number greater than or equal to 5$)=\mathrm{P}(5)+\mathrm{P}(6)=1 / 6+1 / 6=2 / 6=1 / 3$
6.6 \{Adams wins. Brown wins, Collins wins, Dalton wins\}
6.7a $\mathrm{P}($ Adams loses $)=\mathrm{P}($ Brown wins $)+\mathrm{P}($ Collins wins $)+\mathrm{P}($ Dalton wins $)=.09+.27+.22=.58$
b P (either Brown or Dalton wins $)=\mathrm{P}($ Brown wins $)+\mathrm{P}($ Dalton wins $)=.09+.22=.31$
c $\mathrm{P}($ either Adams, Brown, or Collins wins $)=\mathrm{P}($ Adams wins $)+\mathrm{P}($ Brown wins $)+\mathrm{P}($ Collins wins $)$

$$
=.42+.09+.27=.78
$$

6.8 a $\{0,1,2,3,4,5\}$
b $\{4,5\}$
c $\mathrm{P}(5)=.10$
$\mathrm{d} \mathrm{P}(2,3$, or 4$)=\mathrm{P}(2)+\mathrm{P}(3)+\mathrm{P}(4)=.26+.21+.18=.65$
e $P(6)=0$
6.9 \{Contractor 1 wins, Contractor 2 wins, Contractor 3 wins \}
6.10 $\mathrm{P}($ Contractor 1 wins $)=2 / 6, \mathrm{P}($ Contractor 2 wins $)=3 / 6, \mathrm{P}($ Contractor 3 wins $)=1 / 6$
6.11 a \{Shopper pays cash, shopper pays by credit card, shopper pays by debit card\}
$\mathrm{b} \mathrm{P}($ Shopper pays cash $)=.30, \mathrm{P}($ Shopper pays by credit card $)=.60, \mathrm{P}($ Shopper pays by debit card $)=.10$
c Relative frequency approach
6.12 a $\mathrm{P}($ shopper does not use credit card $)=\mathrm{P}($ shopper pays cash $)+\mathrm{P}($ shopper pays by debit card $)$
$=.30+.10=.40$
b $\mathrm{P}($ shopper pays cash or uses a credit card $)=\mathrm{P}($ shopper pays cash $)+\mathrm{P}($ shopper pays by credit card $)$

$$
=.30+.60=.90
$$

6.13 \{single, divorced, widowed\}
6.14 a $\mathrm{P}($ single $)=.15, \mathrm{P}($ married $)=.50, \mathrm{P}($ divorced $)=.25, \mathrm{P}($ widowed $)=.10$
b Relative frequency approach
6.15 a $\mathrm{P}($ single $)=.15$
$\mathrm{b} P($ adult is not divorced $)=\mathrm{P}($ single $)+\mathrm{P}($ married $)+\mathrm{P}($ widowed $)=.15+.50+.10=.75$
c $\mathrm{P}($ adult is either widowed or divorced $)=\mathrm{P}($ divorced $)+\mathrm{P}($ widowed $)=.25+.10=.35$
$6.16 \mathrm{P}\left(\mathrm{A}_{1}\right)=.4+.2=.6, \mathrm{P}\left(\mathrm{A}_{2}\right)=.3+.1=.4 . \mathrm{P}\left(\mathrm{B}_{1}\right)=.4+.3=.7, \mathrm{P}\left(\mathrm{B}_{2}\right)=.2+.1=.3$.
$6.17 \mathrm{P}\left(\mathrm{A}_{1}\right)=.1+.2=.3, \mathrm{P}\left(\mathrm{A}_{2}\right)=.3+.1=.4, \mathrm{P}\left(\mathrm{A}_{3}\right)=.2+.1=.3$.
$\mathrm{P}\left(\mathrm{B}_{1}\right)=.1+.3+.2=.6, \mathrm{P}\left(\mathrm{B}_{2}\right)=.2+.1+.1=.4$.
6.18 a $\mathrm{P}\left(\mathrm{A}_{1} \mid \mathrm{B}_{1}\right)=\frac{\mathrm{P}\left(\mathrm{A}_{1} \text { and } \mathrm{B}_{1}\right)}{\mathrm{P}\left(\mathrm{B}_{1}\right)}=\frac{.4}{.7}=.57$
b $\mathrm{P}\left(\mathrm{A}_{2} \mid \mathrm{B}_{1}\right)=\frac{\mathrm{P}\left(\mathrm{A}_{2} \text { and } \mathrm{B}_{1}\right)}{\mathrm{P}\left(\mathrm{B}_{1}\right)}=\frac{.3}{.7}=.43$
c Yes. It is not a coincidence. Given B_{1} the events A_{1} and A_{2} constitute the entire sample space.
6.19 a $\mathrm{P}\left(\mathrm{A}_{1} \mid \mathrm{B}_{2}\right)=\frac{\mathrm{P}\left(\mathrm{A}_{1} \text { and } \mathrm{B}_{2}\right)}{\mathrm{P}\left(\mathrm{B}_{2}\right)}=\frac{.2}{.3}=.67$
$\mathrm{b} P\left(\mathrm{~B}_{2} \mid \mathrm{A}_{1}\right)=\frac{\mathrm{P}\left(\mathrm{A}_{1} \text { and } \mathrm{B}_{2}\right)}{\mathrm{P}\left(\mathrm{A}_{1}\right)}=\frac{.2}{.6}=.33$
c One of the conditional probabilities would be greater than 1 , which is not possible.
6.20 The events are not independent because $\mathrm{P}\left(\mathrm{A}_{1} \mid \mathrm{B}_{2}\right) \neq \mathrm{P}\left(\mathrm{A}_{1}\right)$.
6.21 a $\mathrm{P}\left(\mathrm{A}_{1}\right.$ or $\left.\mathrm{B}_{1}\right)=\mathrm{P}\left(\mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{B}_{1}\right)-\mathrm{P}\left(\mathrm{A}_{1}\right.$ and $\left.\mathrm{B}_{1}\right)=.6+.7-.4=.9$
$\mathrm{b} P\left(\mathrm{~A}_{1}\right.$ or $\left.\mathrm{B}_{2}\right)=\mathrm{P}\left(\mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{B}_{2}\right)-\mathrm{P}\left(\mathrm{A}_{1}\right.$ and $\left.\mathrm{B}_{2}\right)=.6+.3-.2=.7$
c $\mathrm{P}\left(\mathrm{A}_{1}\right.$ or $\left.\mathrm{A}_{2}\right)=\mathrm{P}\left(\mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{A}_{2}\right)=.6+.4=1$
$6.22 \mathrm{P}\left(\mathrm{A}_{1} \mid \mathrm{B}_{1}\right)=\frac{\mathrm{P}\left(\mathrm{A}_{1} \text { and } \mathrm{B}_{1}\right)}{\mathrm{P}\left(\mathrm{B}_{1}\right)}=\frac{.20}{.20+.15}=.571 ; \mathrm{P}\left(\mathrm{A}_{1}\right)=.20+.60=.80$; the events are dependent.
6.23 $\mathrm{P}\left(\mathrm{A}_{1} \mid \mathrm{B}_{1}\right)=\frac{\mathrm{P}\left(\mathrm{A}_{1} \text { and } \mathrm{B}_{1}\right)}{\mathrm{P}\left(\mathrm{B}_{1}\right)}=\frac{.20}{.20+.60}=.25 ; \mathrm{P}\left(\mathrm{A}_{1}\right)=.20+.05=.25$; the events are independent.
$6.24 \mathrm{P}\left(\mathrm{A}_{1}\right)=.20+.25=.45, \mathrm{P}\left(\mathrm{A}_{2}\right)=.15+.25=.40, \mathrm{P}\left(\mathrm{A}_{3}\right)=.10+.05=.15$.
$\mathrm{P}\left(\mathrm{B}_{1}\right)=.20+15+.10=.45, \mathrm{P}\left(\mathrm{B}_{2}\right)=.25+.25+.05=.55$.
6.25 a $\mathrm{P}\left(\mathrm{A}_{2} \mid \mathrm{B}_{2}\right)=\frac{\mathrm{P}\left(\mathrm{A}_{2} \text { and } \mathrm{B}_{2}\right)}{\mathrm{P}\left(\mathrm{B}_{2}\right)}=\frac{.25}{.55}=.455$
$\mathrm{b} P\left(\mathrm{~B}_{2} \mid \mathrm{A}_{2}\right)=\frac{\mathrm{P}\left(\mathrm{A}_{2} \text { and } \mathrm{B}_{2}\right)}{\mathrm{P}\left(\mathrm{A}_{2}\right)}=\frac{.25}{.40}=.625$
$\mathrm{c} \mathrm{P}\left(\mathrm{B}_{1} \mid \mathrm{A}_{2}\right)=\frac{\mathrm{P}\left(\mathrm{A}_{2} \text { and } \mathrm{B}_{1}\right)}{\mathrm{P}\left(\mathrm{A}_{2}\right)}=\frac{.15}{.40}=.375$
6.26 a $\mathrm{P}\left(\mathrm{A}_{1}\right.$ or $\left.\mathrm{A}_{2}\right)=\mathrm{P}\left(\mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{A}_{2}\right)=.45+.40=.85$
b $\mathrm{P}\left(\mathrm{A}_{2}\right.$ or $\left.\mathrm{B}_{2}\right)=\mathrm{P}\left(\mathrm{A}_{2}\right)+\mathrm{P}\left(\mathrm{B}_{2}\right)-\mathrm{P}\left(\mathrm{A}_{2}\right.$ and $\left.\mathrm{B}_{2}\right)=.40+.55-.25=.70$
c $\mathrm{P}\left(\mathrm{A}_{3}\right.$ or $\left.\mathrm{B}_{1}\right)=\mathrm{P}\left(\mathrm{A}_{3}\right)+\mathrm{P}\left(\mathrm{B}_{1}\right)-\mathrm{P}\left(\mathrm{A}_{3}\right.$ and $\left.\mathrm{B}_{1}\right)=.15+.45-.10=.50$
6.27 a $\mathrm{P}($ debit card $)=.04+.18+.14=.36$
b P(over $\$ 100 \mid$ credit card $)=\frac{\mathrm{P}(\text { credit card and over } \$ 100}{\mathrm{P}(\text { credit card })}=\frac{.23}{.03+.21+.23}=.49$
c $\mathrm{P}($ credit card or debit card $)=\mathrm{P}($ credit card $)+\mathrm{P}($ debit card $)=.47+.36=.83$
6.28 a $\mathrm{P}($ promoted \mid female $)=\frac{\mathrm{P}(\text { promoted and female })}{\mathrm{P}(\text { female })}=\frac{.05}{.05+.12}=.294$
$\mathrm{b} P($ promoted \mid male $)=\frac{\mathrm{P}(\text { promoted and male })}{\mathrm{P}(\text { male })}=\frac{.15}{.15+.68}=.181$
c Yes, because promotion and gender are not independent events.
6.29 a $\mathrm{P}($ voted $)=.25+.18=.43$
$\mathrm{b} \mathrm{P}($ voted \mid female $)=\frac{\mathrm{P}(\text { voted and female })}{\mathrm{P}(\text { female })}=\frac{.25}{.25+.33}=.431, \mathrm{P}($ voted $)=.43$, Subject to rounding the events are independent.
6.30 a $\mathrm{P}(\mathrm{He}$ is a smoker $)=.10+.21=.31$
b $\mathrm{P}($ He does not have lung disease $)=.21+.66=.87$
с $\mathrm{P}($ He has lung disease \mid he is a smoker $)=\frac{\mathrm{P}(\text { he has lung disease and he is a smo ker })}{\mathrm{P}(\text { he is a smo ker })}=\frac{.10}{.31}=.323$
$\mathrm{d} P($ He has lung disease \mid he does not smoke $)=\frac{\mathrm{P}(\text { he has lung disease and he does not smoke })}{\mathrm{P}(\text { he does not smoke })}=\frac{.03}{.69}=.044$
6.31 The events are dependent because P (he has lung disease) $=.13, \mathrm{P}$ (he has lung disease \mid he is a smoker)

$$
=.323
$$

6.32 a $\mathrm{P}($ manual \mid math-stats $)=\frac{\mathrm{P}(\text { manual and math }- \text { stats })}{\mathrm{P}(\text { math }- \text { stats })}=\frac{.23}{.23+.36}=.390$
b $\mathrm{P}($ computer $)=.36+.30=.66$
c No, because $\mathrm{P}($ manual $)=.23+.11=.34$, which is not equal to P (manual | math-stats).
6.33 a P (customer will return and good rating) $=.35$
$\mathrm{b} \mathrm{P}($ good rating | will return $)=\frac{\mathrm{P}(\text { good rating and will return })}{\mathrm{P}(\text { will return })}=\frac{.35}{.02+.08+.35+.20}=\frac{.35}{.65}=.538$
c $\mathrm{P}($ will return \mid good rating $) \frac{\mathrm{P}(\text { good rating and will return })}{\mathrm{P}(\text { good rating })}=\frac{.35}{.35+.14}=\frac{.35}{.49}=.714$
d (a) is the joint probability and (b) and (c) are conditional probabilities
6.34 a $\mathrm{P}($ ask \mid male $)=\frac{\mathrm{P}(\text { ask and male })}{\mathrm{P}(\text { male })}=\frac{.12}{.23+.12+.15}=\frac{.12}{.50}=.24$
b $\mathrm{P}($ consult a map $)=.23+.14=.37$
c No, because $\mathrm{P}($ consult map \mid male $)=\frac{\mathrm{P}(\text { consult a map and male })}{\mathrm{P}(\text { male })}=\frac{.23}{.23+.12+.15}=\frac{.25}{.50}=.46$, which is not equal to P(consult map)
6.35 a $\mathrm{P}($ ulcer $)=.03+.03+.03+.04=.13$
b P(ulcer \mid none $)=\frac{\mathrm{P}(\text { ulcer and none })}{\mathrm{P}(\text { none })}=\frac{.03}{.03+.20}=\frac{.03}{.23}=.130$
с $\mathrm{P}($ none \mid ulcer $)=\frac{\mathrm{P}(\text { ulcer and none })}{\mathrm{P}(\text { ulcer })}=\frac{.03}{.03+.03+.03+.04}=\frac{.03}{.13}=.231$
$\mathrm{d} \mathrm{P}($ two \mid no ulcer $)=\frac{\mathrm{P}(\text { no ulcer and two })}{\mathrm{P}(\text { no ulcer })}=\frac{.32}{.20+.19+.32+.16}=\frac{.32}{.87}=.368$
6.36 a $\mathrm{P}($ remember $)=.12+.18=.30$
$\mathrm{b} P($ remember \mid violent $)=\frac{\mathrm{P}(\text { remember and violent })}{\mathrm{P}(\text { violent })}=\frac{.12}{.12+.38}=\frac{.12}{.50}=.24$
c Yes, the events are dependent.
6.37 a $\mathrm{P}($ above average \mid murderer $)=\frac{\mathrm{P}(\text { above average and murderer })}{\mathrm{P}(\text { murderer })}=\frac{.27}{.27+.21}=\frac{.27}{.48}=.563$
b No, because P (above average) $=.27+.24=.51$, which is not equal to P (above average testosterone | murderer).
6.38 a $\mathrm{P}($ uses a spreadsheet $)=.311+.312=.623$
b P(uses a spreadsheet \mid male $)=\frac{\mathrm{P}(\text { uses a spreadsheet and male })}{\mathrm{P}(\text { male })}=\frac{.312}{.312+.168}=\frac{.312}{.480}=.650$
c b P(female | uses a spreadsheet $)=\frac{\mathrm{P}(\text { uses a spreadsheet and female })}{\mathrm{P}(\text { uses a spreadsheet })}=\frac{.311}{.311+.209}=\frac{.311}{.520}=.598$
6.39 No, because P(uses a spreadsheet) $\neq \mathrm{P}$ (uses a spreadsheet | male)
6.40 a $\mathrm{P}($ under 20$)=.2307+.0993+.5009=.8309$
b P(retail) $=.5009+.0876+.0113=.5998$
c $\mathrm{P}(20$ to $99 \mid$ construction $)=\frac{\mathrm{P}(20 \text { to } 99 \text { and construction })}{\mathrm{P}(\text { construction })}=\frac{.0189}{.2307+.0189+.0019}=\frac{.0189}{.2515}=.0751$
6.41 a $\mathrm{P}($ provided by employer $)=.166+.195+.230=.591$
b P(provided by employer | professional/technical) =
$\frac{\mathrm{P}(\text { provided by employer and professional } / \text { technical })}{\mathrm{P}(\text { professional } / \text { technical })}=\frac{.166}{.166+.094}=\frac{.166}{.260}=.638$
$\mathrm{c} \frac{\mathrm{P}(\text { provided by employer and blue }- \text { collar } / \text { services })}{\mathrm{P}(\text { blue }- \text { collar } / \text { services })}=\frac{.230}{.230+.180}=\frac{.230}{.410}=.561$
6.42 a $\mathrm{P}($ new \mid overdue $)=\frac{\mathrm{P}(\text { new and overdue })}{\mathrm{P}(\text { overdue })}=\frac{.08}{.08+.50}=\frac{.08}{.58}=.138$
$\mathrm{b} P($ overdue \mid new $)=\frac{\mathrm{P}(\text { new and overdue })}{\mathrm{P}(\text { new })}=\frac{.08}{.08+.13}=\frac{.08}{.21}=.381$
c Yes, because $\mathrm{P}($ new $)=.21 \neq \mathrm{P}($ new \mid overdue $)$
6.43 $\mathrm{P}($ purchase \mid see ad$)=\frac{\mathrm{P}(\text { purchase and see ad })}{\mathrm{P}(\text { see ad })}=\frac{.18}{.18+.42}=\frac{.18}{.60}=.30 ; \mathrm{P}($ purchase \mid do not see ad $)=$
$\frac{\mathrm{P}(\text { purchase and do not see ad })}{\mathrm{P}(\text { do not see ad })}=\frac{.12}{.12+.28}=\frac{.12}{.40}=.30$; the ads are not effective
6.44 a P(unemployed | high school graduate) =
$\frac{\mathrm{P}(\text { unemployed and high school graduate })}{\mathrm{P}(\text { high school graduate })}=\frac{.0128}{.3108+.0128}=\frac{.0128}{.3236}=.0396$
$\mathrm{b} P($ employed $)=.0975+.3108+.1785+.0849+.1959+.0975=.9651$
с $\mathrm{P}($ advanced degree \mid unemployed $)=$
$\frac{\mathrm{P}(\text { advanced deg ree and unemployed })}{\mathrm{P}(\text { unemployed })}=\frac{.0015}{.0080+.0128+.0062+.0023+.0041+.0015}=\frac{.0015}{.0349}=.0430$
$\mathrm{d} P($ not a high school graduate $)=.0975+.0080=.1055$
6.45 a $\mathrm{P}($ fully repaid $)=.17+.66=.83$
b $\mathrm{P}($ fully repaid \mid under 400$)=\frac{\mathrm{P}(\text { fully repaid and under } 400)}{\mathrm{P}(\text { under } 400)}=\frac{.17}{.17+.13}=\frac{.17}{.30}=.567$
с $\mathrm{P}($ fully repaid $\mid 400$ or more $)=\frac{\mathrm{P}(\text { fully repaid and } 400 \text { or more })}{\mathrm{P}(400 \text { or more })}=\frac{.66}{.66+.04}=\frac{.66}{.70}=.943$
d No, because $P($ fully repaid $) \neq P($ fully repaid \mid under 400)
6.46 a P(bachelor’s degree | west)
$=\frac{\mathrm{P}(\text { bachelor's deg ree and west })}{\mathrm{P}(\text { west })}=\frac{.0418}{.0359+.0608+.0456+.0181+.0418+.0180}=\frac{.0418}{.2202}=.1898$
b P(northwest | high school graduate)
$=\frac{\mathrm{P}(\text { northwest and high school graduate })}{\mathrm{P}(\text { high school graduate })}=\frac{.0711}{.0711+.0843+.1174+.0608}=\frac{.0711}{.3336}=.2131$
c $\mathrm{P}($ south $)=.0683+.1174+.0605+.0248+.0559+.0269=.3538$

6.49

Joint events Probabilities

A and B
$(0.9)(0.4)=0.36$
A and B^{C}
$(0.9)(0.6)=0.54$
A^{C} and B
$(0.1)(0.7)=0.07$

Joint events Probabilities

a $\mathrm{P}(\mathrm{R}$ and R$)=.81$
b $\mathrm{P}(\mathrm{L}$ and L$)=.01$
$\mathrm{c} P(\mathrm{R}$ and L$)+\mathrm{P}(\mathrm{L}$ and R$)=.09+.09=.18$
$\mathrm{d} P($ Rand L$)+\mathrm{P}(\mathrm{L}$ and R$)+\mathrm{P}(\mathrm{R}$ and R$)=.09+.09+.81=.99$
6.53 a \& b

c 0 right-handers 1
1 right-hander 3
2 right-handers 3
3 right-handers 1
$\mathrm{d} \mathrm{P}(0$ right-handers $)=.001$
$\mathrm{P}(1$ right-hander $)=3(.009)=.027$
$P(2$ right-handers $)=3(.081)=.243$
$\mathrm{P}(3$ right-handers $)=.729$


```
b P(RR)=. }809
c P(LL) =.0091
d P(RL) + P(LR) = . 0909 + . 0909 = . }181
e P(RL) + P(LR) + P(RR) = . 0909 + . 0909 + . }8091=.990
6.55a
```


$\mathrm{P}(0$ right-handers $)=(10 / 100)(9 / 99)(8 / 98)=.0007$
$\mathrm{P}(1$ right-hander $)=3(90 / 100)(10 / 99)(9 / 98)=.0249$
P)2 right-handers $)=3(90 / 100)(89 / 99)(10 / 98)=.2478$
$\mathrm{P}(3$ right-handers $)=(90 / 100)(89 / 99)(88 / 98)=.7265$
6.56

a $\mathrm{P}($ vote in last election and male $)=.1806$
b $\mathrm{P}($ vote in last election and female $)=.2494$

$\mathrm{P}($ heart attack $)=.0594+.0737=.1331$
6.61

Diversity index $=.12+.04+.12+.0075+.04+.0075=.335$

$\mathrm{P}($ pass $)=.228+.243+.227=.698$
6.63

$\mathrm{P}($ good $)=.2736+.0764=.3504$

6.65

Joint events Probabilities

$\mathrm{P}($ does not have to be discarded $)=.1848+.78=.9648$
6.66 Let $\mathrm{A}=$ mutual fund outperforms the market in the first year
$B=$ mutual outperforms the market in the second year
$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} \mid \mathrm{A})=(.15)(.22)=.033$
6.67 P(wireless Web user uses it primarily for e-mail) = . 69
$\mathrm{P}(3$ wireless Web users use it primarily for e-mail $)=(.69)(.69)(.69)=.3285$
6.68 Define the events:

M : The main control will fail.
B_{1} : The first backup will fail.
B_{2} : The second backup will fail

The probability that the plane will crash is

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{M} \text { and } \mathrm{B}_{1} \text { and } \mathrm{B}_{2}\right)=[\mathrm{P}(\mathrm{M})]\left[\mathrm{P}\left(\mathrm{~B}_{1}\right)\right]\left[\mathrm{P}\left(\mathrm{~B}_{2}\right)\right] \\
= & (.0001)(.01)(.01) \\
= & .00000001
\end{aligned}
$$

We have assumed that the 3 systems will fail independently of one another.
6.69 Let $\mathrm{A}=$ DJIA increase and $\mathrm{B}=$ NASDAQ increase

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A})=.60 \text { and } \mathrm{P}(\mathrm{~B} \mid \mathrm{A})=.77 \\
& \mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B} \mid \mathrm{A})=(.60)(.77)=.462
\end{aligned}
$$

6.70

$\mathrm{P}($ Increase $)=.06+.525=.585$
$6.71 \mathrm{P}(\mathrm{A}$ and B$)=.36, \mathrm{P}(\mathrm{B})=.36+.07=.43$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \text { and } \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{.36}{.43}=.837$
6.72 $\mathrm{P}(\mathrm{A}$ and B$)=.32, \mathrm{P}\left(\mathrm{A}^{\mathrm{C}}\right.$ and B$)=.14, \mathrm{P}(\mathrm{B})=.46, \mathrm{P}^{\mathrm{C}}\left(\mathrm{B}^{\mathrm{C}}\right)=.54$
a $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \text { and } \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{.32}{.46}=.696$
$\mathrm{b} P\left(\mathrm{~A}^{\mathrm{C}} \mid \mathrm{B}\right)=\frac{\mathrm{P}\left(\mathrm{A}^{\mathrm{C}} \text { and } \mathrm{B}\right)}{\mathrm{P}(\mathrm{B})}=\frac{.14}{.46}=.304$
с $\mathrm{P}\left(\mathrm{A}\right.$ and $\left.\mathrm{B}^{\mathrm{C}}\right)=.48 ; \mathrm{P}\left(\mathrm{A} \mid \mathrm{B}^{\mathrm{C}}\right)=\frac{\mathrm{P}\left(\mathrm{A} \text { and } \mathrm{B}^{\mathrm{C}}\right)}{\mathrm{P}\left(\mathrm{B}^{\mathrm{C}}\right)}=\frac{.48}{.54}=.889$
$\mathrm{d} \mathrm{P}\left(\mathrm{A}^{\mathrm{C}}\right.$ and $\left.\mathrm{B}^{\mathrm{C}}\right)=.06 ; \mathrm{P}\left(\mathrm{A}^{\mathrm{C}} \mid \mathrm{B}^{\mathrm{C}}\right)=\frac{\mathrm{P}\left(\mathrm{A}^{\mathrm{C}} \text { and } \mathrm{B}^{\mathrm{C}}\right)}{\mathrm{P}\left(\mathrm{B}^{\mathrm{C}}\right)}=\frac{.06}{.54}=.111$
6.73

6.75 Define events: $\mathrm{A}=$ crash with fatality, $\mathrm{B}=\mathrm{BAC}$ is greater than .09)
$\mathrm{P}(\mathrm{A})=.01, \mathrm{P}(\mathrm{B} \mid \mathrm{A})=.084, \mathrm{P}(\mathrm{B})=.12$
$\mathrm{P}(\mathrm{A}$ and B$)=(.01)(.084)=.00084$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \text { and } \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{.00084}{.12}=.007$
6.76 $\mathrm{P}($ CFA $\mathrm{I} \mid$ passed $)=\frac{\mathrm{P}(\text { CFA I and passed })}{\mathrm{P}(\text { passed })}=\frac{.228}{.698}=.327$
6.77 Define events: $\mathrm{A}=$ heart attack, $\mathrm{B}=$ periodontal disease
$\mathrm{P}(\mathrm{A})=.10, \mathrm{P}(\mathrm{B} \mid \mathrm{A})=.85, \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}^{\mathrm{C}}\right)=.29$

Joint events Probabilities

$\mathrm{P}(\mathrm{B})=.085+.261=.346$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \text { and } \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{.085}{.346}=.246$
6.78 $\mathrm{P}(\mathrm{A})=.40, \mathrm{P}(\mathrm{B} \mid \mathrm{A})=.85, \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}^{\mathrm{C}}\right)=.29$

Joint events Probabilities

$\mathrm{P}(\mathrm{B})=.34+.174=.514$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \text { and } \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{.34}{.514}=.661$
6.79 Define events: $\mathrm{A}=$ smoke, $\mathrm{B}_{1}=$ did not finish high school, $\mathrm{B}_{2}=$ high school graduate, $\mathrm{B}_{3}=$ some college, no degree, $\mathrm{B}_{4}=$ completed a degree
$\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}_{1}\right)=.40, \mathrm{P}\left(\mathrm{A} \mid \mathrm{B}_{2}\right)=.34, \mathrm{P}\left(\mathrm{A} \mid \mathrm{B}_{3}\right)=.24, \mathrm{P}\left(\mathrm{A} \mid \mathrm{B}_{4}\right)=.14$
From Exercise 6.45: $\mathrm{P}\left(\mathrm{B}_{1}\right)=.1055, \mathrm{P}\left(\mathrm{B}_{2}\right)=.3236, \mathrm{P}\left(\mathrm{B}_{3}\right)=.1847, \mathrm{P}\left(\mathrm{B}_{4}\right)=.3862$

Joint events

Probabilities

$\mathrm{P}(\mathrm{A})=.0422+.1100+.0443+.0541=.2506$
$\mathrm{P}\left(\mathrm{B}_{4} \mid \mathrm{A}\right)=.0541 / .2506=.2159$
6.80 Define events: A, B, C = airlines A, B, and C, $\mathrm{D}=$ on time
$\mathrm{P}(\mathrm{A})=.50, \mathrm{P}(\mathrm{B})=.30, \mathrm{P}(\mathrm{C})=.20, \mathrm{P}(\mathrm{D} \mid \mathrm{A})=.80, \mathrm{P}(\mathrm{D} \mid \mathrm{B})=.65, \mathrm{P}(\mathrm{D} \mid \mathrm{C})=.40$
Joint
events Probabilities

$\mathrm{P}(\mathrm{D})=.40+.195+.08=.675$
$\mathrm{P}(\mathrm{A} \mid \mathrm{D})=\frac{\mathrm{P}(\mathrm{A} \text { and } \mathrm{D})}{\mathrm{P}(\mathrm{D})}=\frac{.40}{.675}=.593$
6.81 Define events: $\mathrm{A}=$ win series, $\mathrm{B}=$ win first game
$\mathrm{P}(\mathrm{A})=.60, \mathrm{P}(\mathrm{B} \mid \mathrm{A})=.70, \mathrm{P}\left(\mathrm{B} \mid \mathrm{A}^{\mathrm{C}}\right)=.25$
Joint events Probabilities

$$
\begin{aligned}
& A \text { and } B^{c} \quad(0.60)(0.30)=0.18 \\
& A^{\mathrm{C}} \text { and } B^{c} \quad(0.40)(0.75)=0.30
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{~B}^{\mathrm{C}}\right)=.18+.30=.48 \\
& \mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}^{\mathrm{C}}\right)=\frac{\mathrm{P}\left(\mathrm{~A} \text { and } \mathrm{B}^{\mathrm{C}}\right)}{\mathrm{P}\left(\mathrm{~B}^{\mathrm{C}}\right)}=\frac{.18}{.48}=.375
\end{aligned}
$$

6.82

$$
\begin{aligned}
& \mathrm{P}(\mathrm{PT})=.28+.052=.332 \\
& \mathrm{P}(\mathrm{R} \mid \mathrm{PT})=\frac{\mathrm{P}(\mathrm{R} \text { and } \mathrm{PT})}{\mathrm{P}(\mathrm{PT})}=\frac{.28}{.332}=.843
\end{aligned}
$$

6.85

$\mathrm{P}(\mathrm{NT})=.0036+.3567=.3603$
$\mathrm{P}(\mathrm{C} \mid \mathrm{PT})=\frac{\mathrm{P}(\mathrm{C} \text { and } \mathrm{PT})}{\mathrm{P}(\mathrm{PT})}=\frac{.0164}{.6397}=.0256$
$\mathrm{P}(\mathrm{C} \mid \mathrm{NT})=\frac{\mathrm{P}(\mathrm{C} \text { and } \mathrm{NT})}{\mathrm{P}(\mathrm{NT})}=\frac{.0036}{.3603}=.0010$
6.86 a $\mathrm{P}($ Marketing-A $)=.06+.23=.29$
b P $($ Marketing $\mathrm{A} \mid$ Statistics not A$)=\frac{\mathrm{P}(\text { Marketing A and Statistics not } \mathrm{A})}{\mathrm{P}(\text { Statistics not } \mathrm{A})}=\frac{.23}{.23+.58}=\frac{.23}{.81}=.2840$
c No, the probabilities in (a) and (b) differ
6.87 Define events: $A=$ win contract A and $B=$ win contract B

Joint events Probabilities

a $\mathrm{P}(\mathrm{A}$ and B$)=.12$
$\mathrm{b} P\left(\mathrm{~A}\right.$ and $\left.\mathrm{B}^{\mathrm{C}}\right)+\mathrm{P}\left(\mathrm{A}^{\mathrm{C}}\right.$ and B$)=.18+.14=.32$
$\mathrm{c} \mathrm{P}(\mathrm{A}$ and B$)+\mathrm{P}\left(\mathrm{A}\right.$ and $\left.\mathrm{B}^{\mathrm{C}}\right)+\mathrm{P}\left(\mathrm{A}^{\mathrm{C}}\right.$ and B$)=.12+.18+.14=.44$
6.88 a $\mathrm{P}($ second $)=.05+.14=.19$
$\mathrm{b} P($ successful $\mid-8$ or less $)=\frac{\mathrm{P}(\text { successful and }-8 \text { or less })}{\mathrm{P}(-8 \text { or less })}=\frac{.15}{.15+.14}=\frac{.15}{.29}=.517$
c No, because $\mathrm{P}($ successful $)=.66+.15=.81$, which is not equal to $\mathrm{P}($ successful $\mid-8$ or less) .
6.89 Define events: $\mathrm{A}=$ woman, $\mathrm{B}=$ drug is effective

Joint events Probabilities

$\mathrm{P}(\mathrm{B})=.528+.221=.749$
$6.90 \mathrm{P}\left(\mathrm{A}^{\mathrm{C}} \mid \mathrm{B}\right)=\frac{\mathrm{P}\left(\mathrm{A}^{\mathrm{C}} \text { and } \mathrm{B}\right)}{\mathrm{P}(\mathrm{B})}=\frac{.221}{.749}=.295$
6.91 P(Idle roughly)
$=\mathrm{P}($ at least one spark plug malfunctions $)=1-\mathrm{P}($ all function $)=1-\left(.90^{4}\right)=1-.6561=.3439$
6.92

$\mathrm{P}($ no sale $)=.65+.175=.825$
6.93 a $\mathrm{P}($ pass $)=.86+.03=.89$
$\mathrm{b} P($ pass \mid miss 5 or more classes $)=\frac{\mathrm{P}(\text { pass and miss or more classes })}{\mathrm{P}(\text { miss } 5 \text { or more classes })}=\frac{.03}{.09+.03}=\frac{.03}{.12}=.250$
с P (pass \mid miss less than 5 classes $)=\frac{\mathrm{P}(\text { pass and miss less than } 5 \text { classes })}{\mathrm{P}(\text { miss less than } 5 \text { classes })}=\frac{.86}{.86+.02}=\frac{.86}{.88}=.977$.
d No since P (pass) $\neq \mathrm{P}$ (pass \mid miss 5 or more classes)

Joint events Probabilities

$a P(D)=P(R$ and $D)+P\left(R^{C}\right.$ and $\left.D\right)=.1107+.2263=.3370$
$P(R \mid D)=\frac{P(R \text { and } D)}{P(D)}=\frac{.1107}{.3370}=.3285$
$b P\left(D^{C}\right)=P\left(R\right.$ and $\left.D^{C}\right)+P\left(R^{C}\right.$ and $\left.D^{C}\right)=.1593+.5037=.6630$
$\mathrm{P}\left(\mathrm{R} \mid \mathrm{D}^{\mathrm{C}}\right)=\frac{\mathrm{P}\left(\mathrm{R} \text { and } \mathrm{D}^{\mathrm{C}}\right)}{\mathrm{P}\left(\mathrm{D}^{\mathrm{C}}\right)}=\frac{.1593}{.6630}=.2403$
6.95 a $\mathrm{P}($ excellent $)=.27+.22=.49$
b $\mathrm{P}($ excellent $\mid \mathrm{man})=.22 /(.22+.10+.12+.06)=.44$
с $\mathrm{P}($ man \mid excellent $)=\frac{\mathrm{P}(\text { man and excellent })}{\mathrm{P}(\text { excellent })}=\frac{.22}{.27+.22}=\frac{.22}{.49}=.449$
d No, since $\mathrm{P}($ excellent $) \neq \mathrm{P}($ excellent \mid man $)$
6.96

6.97 Define events: $A_{1}=$ Low-income earner, $A_{2}=$ medium-income earner, $A_{3}=$ high-income earner, $B=$ die of a heart attack

probabilities

$\mathrm{P}\left(\mathrm{B}^{\mathrm{C}}\right)=.1848+.4459+.2790=.9097$
$\mathrm{P}\left(\mathrm{A}_{1} \mid \mathrm{B}^{\mathrm{C}}\right)=\frac{\mathrm{P}\left(\mathrm{A}_{1} \text { and } \mathrm{B}^{\mathrm{C}}\right)}{\mathrm{P}\left(\mathrm{B}^{\mathrm{C}}\right)}=\frac{.1848}{.9097}=.2031$
6.98 Define the events: $\mathrm{A}_{1}=$ envelope containing two Maui brochures is selected, $\mathrm{A}_{2}=$ envelope containing two Oahu brochures is selected, $\mathrm{A}_{3}=$ envelope containing one Maui and one Oahu brochures is selected. B = a Maui brochure is removed from the selected envelope.

Joint events
 Probabilities

$P(B)=1 / 3+0+1 / 6=1 / 2$
$\mathrm{P}\left(\mathrm{A}_{1} \mid \mathrm{B}\right)=\frac{\mathrm{P}\left(\mathrm{A}_{1} \text { and } \mathrm{B}\right)}{\mathrm{P}(\mathrm{B})}=\frac{1 / 3}{1 / 2}=2 / 3$
6.99 Define events: $\mathrm{A}=$ purchase extended warranty, $\mathrm{B}=$ regular price
a $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \text { and } \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{.21}{.21+.57}=\frac{.21}{.78}=.2692$
$\mathrm{b} P(\mathrm{~A})=.21+.14=.35$
c No, because $\mathrm{P}(\mathrm{A}) \neq \mathrm{P}(\mathrm{A} \mid \mathrm{B})$
6.100 Define events: A = company fail, $\mathrm{B}=$ predict bankruptcy
$\mathrm{P}(\mathrm{A})=.08, \mathrm{P}(\mathrm{B} \mid \mathrm{A})=.85, \mathrm{P}\left(\mathrm{B}^{\mathrm{C}} \mid \mathrm{A}^{\mathrm{C}}\right)=.74$
Joint events Probabilities

$\mathrm{P}(\mathrm{B})=.068+.2392=.3072$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \text { and } \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{.068}{.3072}=.2214$
6.101 Define events: $A=$ job security is an important issue, $B=$ pension benefits is an important issue $\mathrm{P}(\mathrm{A})=.74, \mathrm{P}(\mathrm{B})=.65, \mathrm{P}(\mathrm{A} \mid \mathrm{B})=.60$
$a \mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{A} \mid \mathrm{B})=(.65)(.60)=.39$
$\mathrm{b} \mathrm{P}(\mathrm{A}$ or B$)=.74+.65-.39=1$
6.102 Probabilities of outcomes: $\mathrm{P}(\mathrm{HH})=.25, \mathrm{P}(\mathrm{HT})=.25, \mathrm{P}(\mathrm{TH})=.25, \mathrm{P}(\mathrm{TT}) .25$
$\mathrm{P}(\mathrm{TT} \mid \mathrm{HH}$ is not possible $)=.25 /(.25+.25+.25)=.333$
6.103 $\mathrm{P}(\mathrm{T})=.5$

Case 6.1

1. $P($ Curtain $A)=1 / 3, P($ Curtain $B)=1 / 3$
2. $\mathrm{P}($ Curtain A$)=1 / 3, \mathrm{P}($ Curtain $B)=2 / 3$

Case 6.2

	Probability Of outcome	Bases Occupied	Outs	Probability of scoring	Joint Probability
1	.75	2nd	1	.42	.3150
2	.10	1 st	1	.26	.0260
3	.10	none	2	.07	.0070
4	.05	1st and 2nd	0	.59	.0295

Because the probability of scoring with a runner on first base with no outs (.39) is greater than the probability of scoring after bunting (.3775) you should not bunt.

Case 6.3
0 outs:
Probability of scoring any runs from first base $=.39$
Probability of scoring from second base $=$ probability of successful steal \times probability of scoring any runs from second base $=(.68)(.57)=.3876$
Decision: Do not attempt to steal.

1 out:
Probability of scoring any runs from first base $=.26$
Probability of scoring from second base $=$ probability of successful steal \times probability of scoring any runs from second base $=(.68) \times(.42)=.2856$

Decision: Attempt to steal.

2 outs:
Probability of scoring any runs from first base $=.13$
Probability of scoring from second base $=$ probability of successful steal \times probability of scoring any runs
from second base $=(.68) \times(.24)=.1632$
Decision: Attempt to steal.

Case 6.4
Joint Events

$$
\begin{aligned}
& \text { Age 25: } \mathrm{P}(\mathrm{D})=1 / 1,300 \\
& \mathrm{P}(\mathrm{D} \text { and } \mathrm{PT})=(1 / 1,300)(.624)=.00048 \\
& \mathrm{P}(\mathrm{D} \text { and } \mathrm{NT})=(1 / 1,300)(.376)=.00029 \\
& \mathrm{P}\left(\mathrm{D}^{\mathrm{C}} \text { and } \mathrm{PT}\right)=(1,299 / 1,300)(.04)=.03997 \\
& \mathrm{P}\left(\mathrm{D}^{\mathrm{C}} \text { and } \mathrm{NT}\right)=(1,299 / 1,300)(.96)=.95926 \\
& \mathrm{P}(\mathrm{PT})=.00048+.03997=.04045 \\
& \mathrm{P}(\mathrm{NT})=.00029+.95926=.95955 \\
& \mathrm{P}(\mathrm{D} \mid \mathrm{PT})=.00048 / .04045=.01187 \\
& \mathrm{P}(\mathrm{D} \mid \mathrm{NT})=.00029 / .95955=.00030 \\
& \mathrm{Age} \mathrm{30:} \mathrm{P}(\mathrm{D})=1 / 900 \\
& \mathrm{P}(\mathrm{D} \text { and } \mathrm{PT})=(1 / 900)(.710)=.00079 \\
& \mathrm{P}(\mathrm{D} \text { and } \mathrm{NT})=(1 / 900)(.290)=.00032 \\
& \mathrm{P}\left(\mathrm{D}^{\mathrm{C}} \text { and } \mathrm{PT}\right)=(899 / 900)(.082)=.08190 \\
& \mathrm{P}\left(\mathrm{D}^{\mathrm{C}} \text { and } \mathrm{NT}\right)=(899 / 900)(.918)=.91698 \\
& \mathrm{P}(\mathrm{PT})=.00079+.08190=.08269 \\
& \mathrm{P}(\mathrm{NT})=.00032+.91698=.91730 \\
& \mathrm{P}(\mathrm{D} \mid \mathrm{PT})=.00079 / .08269=.00955 \\
& \mathrm{P}(\mathrm{D} \mid \mathrm{NT})=.00032 / .91730=.00035
\end{aligned}
$$

Age 35: $\mathrm{P}(\mathrm{D})=1 / 350$
$\mathrm{P}(\mathrm{D}$ and PT$)=(1 / 350)(.731)=.00209$
$\mathrm{P}(\mathrm{D}$ and NT$)=(1 / 350)(.269)=.00077$
$\mathrm{P}\left(\mathrm{D}^{\mathrm{C}}\right.$ and PT$)=(349 / 350)(.178)=.17749$
$\mathrm{P}\left(\mathrm{D}^{\mathrm{C}}\right.$ and NT$)=(349 / 350)(.822)=.81965$
$\mathrm{P}(\mathrm{PT})=.00209+.17749=.17958$
$\mathrm{P}(\mathrm{NT})=.00077+.81965=.82042$
$\mathrm{P}(\mathrm{D} \mid \mathrm{PT})=.00209 / .17958=.01163$
$\mathrm{P}(\mathrm{D} \mid \mathrm{NT})=.00077 / .82042=.00094$

Age 40: $\mathrm{P}(\mathrm{D})=1 / 100$
$\mathrm{P}(\mathrm{D}$ and PT$)=(1 / 100)(.971)=.00971$
$\mathrm{P}(\mathrm{D}$ and NT$)=(1 / 100)(.029)=.00029$
$P\left(\mathrm{D}^{\mathrm{C}}\right.$ and PT$)=(99 / 100)(.343)=.33957$
$\mathrm{P}\left(\mathrm{D}^{\mathrm{C}}\right.$ and NT$)=(99 / 100)(.657)=.65043$
$\mathrm{P}(\mathrm{PT})=.00971+.33957=.34928$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{NT})=.00029+.65043=.65072 \\
& \mathrm{P}(\mathrm{D} \mid \mathrm{PT})=.00971 / .34928=.02780 \\
& \mathrm{P}(\mathrm{D} \mid \mathrm{NT})=.00029 / .65072=.00045
\end{aligned}
$$

Age 45: $\mathrm{P}(\mathrm{D})=1 / 25$
$\mathrm{P}(\mathrm{D}$ and PT$)=(1 / 25)(.971)=.03884$
$\mathrm{P}(\mathrm{D}$ and NT$)=(1 / 25)(.029)=.00116$
$P\left(D^{C}\right.$ and $\left.P T\right)=(24 / 25)(.343)=.32928$
$\mathrm{P}\left(\mathrm{D}^{\mathrm{C}}\right.$ and NT$)=(24 / 25)(.657)=.63072$
$\mathrm{P}(\mathrm{PT})=.03884+.32928=.36812$
$\mathrm{P}(\mathrm{NT})=.00116+.63072=.63188$
$\mathrm{P}(\mathrm{D} \mid \mathrm{PT})=.03884 / .36812=.10551$
$\mathrm{P}(\mathrm{D} \mid \mathrm{NT})=.00116 / .63188=.00184$

Age 49: $\mathrm{P}(\mathrm{D})=1 / 12$
$\mathrm{P}(\mathrm{D}$ and PT$)=(1 / 12)(.971)=.08092$
$P(D$ and $N T)=(1 / 12)(.029)=.00242$
$P\left(D^{C}\right.$ and $\left.P T\right)=(11 / 12)(.343)=.31442$
$P\left(D^{C}\right.$ and $\left.N T\right)=(11 / 12)(.657)=.60255$
$\mathrm{P}(\mathrm{PT})=.08092+.31442=.39533$
$\mathrm{P}(\mathrm{NT})=.00242+.60255=.60467$
$\mathrm{P}(\mathrm{D} \mid \mathrm{PT})=.08092 / .39533=.20468$
$\mathrm{P}(\mathrm{D} \mid \mathrm{NT})=.00242 / .60467=.00400$

