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Abstract

In this paper, we consider the single vendor single buyer integrated production inventory problem. We relax the

assumption of deterministic demand and assume that the lead time is varying lineraly with the lot size. The lead time is

composed of a lot size-dependent run time and constant delay times such as moving, waiting and setup times.

A solution procedure is suggested for solving the proposed model and numerical examples are used to illustrate the

benefit of integration. A sensitivity analysis is also performed to explore the effect of key parameters on lot size, reorder

point, and expected total cost.

r 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The single vendor single buyer integrated
production inventory problem received a lot of
attention in recent years. This renewed interest is
motivated by the growing focus on supply chain
management. Firms are realizing that a more
efficient management of inventories across the
entire supply chain through better coordination
and more cooperation is in the joint benefit of all
parties involved. Such collaboration is facilitated
by the advances in information technology provid-
ing faster and cheaper communication means.
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Previous research on the joint vendor buyer
problem focused on the production shipment
schedule in terms of the number and size of
batches transferred between both parties. Most of
these models also assumes that demand is deter-
ministic.

One of the first works dealing with the
integrated vendor–buyer problem is due to Baner-
jee (1986). He assumed that the vendor is
manufacturing at a finite rate and considered a
lot for lot model where the vendor produces each
buyer shipment as a separate batch. Goyal (1988)
argued that producing a batch which is made up of
equal shipments generally produced lower cost but
the whole batch must be completed before the first
shipment is made. For a review of the literature
dealing with the integrated vendor buyer problem
prior to 1989, the reader is referred to the paper of
d.
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Goyal and Gupta (1989). Lu (1995) gave an
optimal solution to the single vendor–buyer
problem assuming equal shipments. Goyal (1995)
showed that different shipment size policy could
give a better solution. The proposed policy
involves successive shipments within a production
batch increasing by a constant factor equal to the
ratio of the production rate over the demand rate.
Recently, Hill (1999) provided another unequal
shipment policy for the single vendor single buyer
integrated production inventory problem. The
policy calls for successive shipments to the buyer,
within a single production batch, increasing by a
fixed factor. Later, Hill provided an optimal policy
for the problem that uses shipments increasing by
a fixed factor in the beginning and then remaining
constant after a well specified number of ship-
ments.

When the assumption of deterministic demand
is relaxed and demand is assumed to be stochastic,
lead time becomes an important issue and its
control leads to many benefits. The just-in-time
(JIT) manufacturing philosophy calls for low lead
times to justify the production of small lot sizes.
The implementation of such policies in many
companies revealed many benefits such as lower
investment in inventory, better product quality,
less scrap, and reduced storage space requirements
(Schonberger, 1982). On the other hand, most
inventory models, e.g. the stochastic continuous
review model assume that lead time is a given
parameter. In a recent paper, Kim and Benton
(1995) questioned this assumption and considered
the effect of lot size on lead time and safety stock.
They established a linear relationship between lead
time and lot size based on observations of
Karmarkar (1987). They incorporated this lead
time lot size relation into the classical stochastic
continuous review ðQ; sÞ model. Hariga (1999)
modified Kim and Benton’s model by rectifying
the annual backorder cost and proposing another
relation for the revised lot size. Hariga’s model is
more consistent with JIT’s objectives, in the sense
that it results in smaller lot sizes. Many researchers
looked at the problem of lead time optimization
following the papers by Liao and Shyu (1991)
and Ben-Daya and Raouf (1994) (see for example
Wu, 2001).
In this paper, we consider the single vendor
single buyer integrated production inventory
problem. We relax the assumption that demand
is deterministic and assume that it is stochastic and
tackle the lead time issue. We assume a linear
relationship between lead time and lot size but
take into consideration also nonproductive time
in the lead time expression. A solution procedure
is suggested for solving the proposed model
and numerical examples are used to illustrate the
model and explore the effect of key parameters on
lot size, reorder point, and expected total cost.

This paper is organized as follows. In the next
section, we develop the single vendor single buyer
integrated production inventory problem that
incorporates stochastic demand and variable lead
time. Numerical examples and model results are
presented in Section 3. Finally, Section 4 concludes
the paper.
2. Model

In this paper, we assume that the buyer is using
a continuous review inventory policy. In both
deterministic and stochastic continuous review
inventory policies, the order quantity and reorder
point are often determined under the assumption
of a constant lead time. However, from a practical
point of view, lead time should be considered as a
function of the production lot size. In this section,
the classical ðQ; sÞ continuous review inventory
policy with deterministic variable lead time is
considered for the buyer. In particular, we assume
that the lead time is proportional to the lot size
produced by the vendor in addition to a fixed
delay due to transportation, nonproductive time,
etc., that is LðQÞ ¼ pQ þ b:

The relationship between vendor and buyer can
be described as follow: the buyer orders a lot of
size nQ from the vendor and incurs an ordering
cost A: The vendor manufactures the product in
lots of size nQ with a finite rate 1=p ð1=p > DÞ and
incurs a setup cost K : The buyer receives n lots of
size Q: He incurs a transportation cost F with each
shipment of size Q: The buyer places his order
when his on hand inventory reaches a reorder
point s after receiving the nth shipment. The
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Fig. 1. Inventory of the vendor.
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inventory profile for the vendor is depicted in
Fig. 1.

The following notation will be used to develop
the model:
D
 demand rate in units per unit time

1=p
 production rate in units per unit time

n
 number of shipments from the vendor to

the buyer

Q
 size of equal shipments from the vendor to

the buyer

s
 reorder point

K
 setup cost for the vendor

A
 ordering cost incurred by the buyer for

each order of size nQ
F
 transportation cost for the buyer incurred
with each shipment of size Q
hv
 holding cost per unit per unit time for the
vendor
hb
 holding cost per unit per unit time for the
buyer
S
 safety stock

LðQÞ
 lead time ¼ pQ þ b; where b denotes a

fixed delay due to transportation, produc-
tion time of other products scheduled
during the lead time on the same facility,
etc.
The total expected cost per unit time for the
buyer is given by

TCb ¼
A

n
þ F

� �
D

Q
þ hb

Q

2
þ S

� �
þ

pD

Q
bðs;LðQÞÞ;

where

bðs;LðQÞÞ ¼
Z

N

s

ðx � sÞf ðxÞ dx;

where x is the demand during lead time with
probability density function f ðxÞ:

This model uses the common Hadley–Whitin’s
(1963) expression (1=2Qþ safety stock) to approx-
imate the average inventory level. This approx-
imation depends on the assumption that there is
no overshooting (crossing the reorder point) at the
time of receiving each shipment (see for example
Montgomery and Johnson, 1974, p. 60).

As to the vendor, his total cost per unit time can
be obtained from Fig. 1 by subtracting the
accumulated buyer consumption from the accu-
mulated vendor production.

TCv ¼
KD

nQ
þ hv

Q

2
½nð1� DpÞ � 1þ 2Dp�:

Consequently, the integrated vendor buyer ex-
pected total cost per unit time is given by

ETCðQ; s; nÞ ¼
D

Q
F þ

A þ K

n
þ pbðs;LðQÞÞ

� �

þ
Q

2
½hb þ hv½nð1� DpÞ � 1þ 2Dp��

þ hbS: ð1Þ

The problem is to find the number of shipments n;
the shipment size Q; and the reorder point s; that
minimize the expected total cost (1).

In what follows, we assume that demand during
lead time is normally distributed with mean DLðQÞ
and standard deviation s

ffiffiffiffiffiffiffiffiffiffiffi
LðQÞ

p
: In this case,

S ¼ ks
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pQ þ b

p
;

bðs;LðQÞÞ ¼
Z

N

s

ðx � sÞf ðx;DLðQÞ;s
ffiffiffiffiffiffiffiffiffiffiffi
LðQÞ

p
Þ dx

¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pQ þ b

p
cðkÞ; ð2Þ

where

k ¼ ðs � DLðQÞÞ=s
ffiffiffiffiffiffiffiffiffiffiffi
LðQÞ

p
ð3Þ
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and

cðkÞ ¼
Z

N

k

ðz � kÞfðzÞ dz; ð4Þ

where fðzÞ is the standard normal probability
density function. To simplify notation let

HðnÞ ¼ hb þ hv½nð1� DpÞ � 1þ 2Dp�;

GðnÞ ¼ F þ
A þ K

n
:

Consequently, the expression of the expected total
cost can be rewritten as

ETCðQ; k; nÞ ¼
GðnÞD

Q
þ

Q

2
HðnÞ þ hbks

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pQ þ b

p

þ
pDs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pQ þ b

p
Q

cðkÞ: ð5Þ

For fixed n; let us take the derivatives with respect
to Q and s and set them to zero.

@ETC

@Q
¼ �

GðnÞD
Q2

þ
HðnÞ
2

þ
hbksp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pQ þ b

p

þ pDscðkÞ

pQ

2
ffiffiffiffiffiffiffiffiffi
pQþb

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pQ þ b

p
Q2

¼ 0; ð6Þ

@ETC

@k
¼ shb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pQ þ b

p

�
pD

Q
sF ðkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pQ þ b

p
¼ 0; ð7Þ

where F ðkÞ is the complement of the cumulative
distribution function, i.e., F ðkÞ ¼ 1� F ðkÞ:

After rearranging and simplifying, Eqs. (6) and
(7) become

2D

Q2
GðnÞ þ pscðkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pQ þ b

ph i

¼ HðnÞ þ
hbspffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pQ þ b

p k þ
cðkÞ
F ðkÞ

� 	
; ð8Þ

F ðkÞ ¼
hbQ

pD
: ð9Þ

It can be easily shown (by taking the second
derivative of (7) that the expected total cost
function (1) is convex in k: However, the cost
function may not be convex in Q: Eq. (6) can be
rewritten as

Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D

GðnÞ þ pscðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pQ þ b

p
HðnÞ þ hbspffiffiffiffiffiffiffiffiffi

pQþb
p k þ cðkÞ

F ðkÞ

h i
vuuut ð10Þ

and the value of k can be obtained from

F ðkÞ ¼
hbQ

pD
: ð11Þ

The following iterative procedure can be used to
find an approximate solution to the above
problem:

Algorithm.

Step 0: Set ETC� ¼ N and n ¼ 1

Step 1: Compute Q ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DGðnÞ=HðnÞ

p
�; where

½x� is the nearest integer to x:

Step 2:

* Find k from (9)
* Compute cðkÞ using (4)

Step 3:

* Compute Q0 using (10)
* Set Q0 ¼ ½Q0�

Step 4:

* If jQ0 � Qj ¼ 0; compute ETCðQ; nÞ and go to
Step 5

* If jQ0 � Qj > 0; set Q’Q0 and go to Step 2

Step 5:

* If ETC�
XETCðQ; nÞ then ETC�’ETCðQ; nÞ;

Q�’Q; s�’s; Set n’n þ 1 and go to Step 1
* Otherwise, n�’n � 1 and stop.
3. Numerical example

In this section, we illustrate the model with the
example given in Table 1.

The results for the example given in Table 1 are
summarized in Table 2. As expected, lower
transportation costs justify lower batches, lower
reorder points and lower total expected cost.
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Table 1

Example data

D = 1000 units demand rate on the buyer

s = 5 units standard deviation of demand

P ¼ 1=p = 3200 units production rate for the vendor

K = $ 400 setup cost incurred by the vendor

F = $ 25 transportation cost incurred by the buyer

A = $ 50 ordering cost incurred by the buyer

hb = $ 5 holding cost per unit per unit time for the buyer

hv = $ 4 holding cost per unit per unit time for the vendor

p = $ 100 backorder cost for the buyer

b = 0.01 fixed delay due to transportation

Table 3

Comparison of integrated and independent solutions.

Scenario Vendor Buyer System

Cost

Qv Cost Qb r Cost

1 173 2658.14 173 49 881.73 3539.87

2 447 1788.85 477 48 1298.08 3086.93

3 447 1788.85 141 49 722.90 2511.75

Integrated 575 – 115 49 2007.77

Table 2

Effect of key model parameters

Q n s ETC

F 35 142 4 57 2084.82

25 115 5 49 2007.77

15 95 6 42 1912.53

b 0.100 115 5 141 2018.65

0.010 115 5 49 2007.77

0.001 115 5 39 2006.94

hb 5 115 5 49 2007.77

7 95 6 42 2117.42

10 73 8 35 2251.36
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The results obtained for various values of
nonproductive lead time shows that higher lead
times lead to higher reorder points and higher total
cost. However, the effect on the batch size is
minimal.

Table 2 shows also that total cost, reorder
points and batch sizes are sensitive to changes in
inventory holding cost.

It is also informative to compare the integrated
system solution with the independent solutions.
The following scenarios are considered:

1. The buyer observes the demand and uses an
optimal ðQ; rÞ policy. We assume, for the
purpose of comparison, that the lead time is
that of the optimal integrated solution. Let Qb

be the optimal order quantity of the buyer. The
vendor uses the EPQ model based on the buyer
average demand but produces lots of size Qb:
2. The vendor produces lots of size Qv following
the optimal EPQ solution and based on the
average external demand. The vendor use a
ðQ; rÞ policy but orders lots of size Qv:

3. Both parties observe the same external demand.
However, they act independently. The vendor
uses the optimal EPQ policy and the buyer uses
the optimal ðQ; rÞ inventory policy.

The results for these three scenarios are sum-
marized in Table 3.

Note the significant cost reduction due to the
integration of vendor and buyer decisions. The
integrated solution is superior even to the scenario
where each party chooses its independent optimal
policy, scenario 3.
4. Conclusion

In this paper, we considered the single vendor
single buyer integrated production inventory
problem. Previous work on this problem focused
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on the production shipment schedule in terms of
the number and size of batches transferred
between both parties. Previous models also
assumed that demand is deterministic. Here, we
assume that demand is probabilistic and the lead
time is variable and depends on lot size and other
delays, such as transportation time. A simple
procedure is suggested to obtain an approximate
solution of the proposed model. Examples are
used to illustrate the model and explore the effect
of important parameters on the production
schedule and total expected cost.
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