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Abstract
The power of warehousing system to rapidly respond to customer demands participates an important function in the success

of supply chain. Before picking the customer orders, effectively consolidating orders into batches can significantly speed the

product movement within a warehouse. There is considerable product movement within a warehouse; the warehousing costs can

be reduced by even a small percentage of reduction in the picking distance. The order batching problem is recognized to be NP-

hard, and it is extremely difficult to obtain optimal solutions for large-scale problems within a tolerable computation time.

Previous studies have mainly focused on the order batching problems in warehouses with a single-aisle and two-dimension

layout. This study develops an order batching approach based on genetic algorithms (GAs) to deal with order batching problems

with any kind of batch structure and any kind of warehouse layout. Unlike to previous batching methods, the proposed approach,

additionally, does not require the computation of order/batch proximity and the estimation of travel distance. The proposed GA-

based order batching method, namely GABM, directly minimizes the total travel distance. The potential of applying GABM for

solving medium- and large-scale order batching problems is also investigated by using several examples. From the batching

results, the proposed GABM approach appears to obtain quality solutions in terms of travel distance and facility utilization.
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1. Introduction

To attain the customer service objectives in the

overall supply chain, warehouses serve several value-

adding roles, which include transportation consolida-

tion, product mixing, customer service, contingency
.
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protection and smoothing [1]. In the past, warehouses

mainly focused on putting raw materials, in-process

products and finished goods in storage. With the advent

of supply chain management, warehouses have chan-

ged their role to strategically achieving the logistics

goals of shorter order cycle times, lower inventory

levels, lower costs and better customer service [1]. The

order processing activities in warehouses of these days

are more fast-paced than in the recent past. In order to

satisfy customer demands for shorter order cycle times,

products may stay in warehouses for just a few days

or even a few hours. The warehousing expenditures

which companies sustain involve considerable dollars

amounts, hurrying the movement of products in

warehouses, therefore, has continued to become an

essential issue for warehouse managers.

Order picking is a process by which products are

retrieved from specified storage locations with respect

to customer orders. Order picking is a labor-intensive

task in warehousing, improving the performance of

order picking generally can lead to a large amount of

savings in warehousing costs [2]. The efficiency of

order picking is dependable on factors such as the

storage racks, warehouse layout and control mechan-

isms. Order batching can be taken as an important

mechanism for reducing travel distances and ware-

housing costs [3]. The overall logistics service level also

can be improved through efficient warehousing

operations. In an order picking operation, order pickers

may pick one order at the time (single order picking).

Batch picking (i.e., picking a number of orders

simultaneously) is a better picking scheme due to that

it can attain a higher productivity in a warehousing

system [4].

Warehouse managers are interested in finding the

most economical way of picking orders, which

minimizes the costs involved in terms of travel distance

or travel time. A batch is a group of orders that is

simultaneously picked in a single tour. In the case of

batch picking, orders are generally grouped into batches

in an optimum manner under the criteria of minimum

travel distance or minimum travel time. The order

batching problem of minimizing the total travel

distance can be generally formulated as follows [5]:

minimize
XNO batch

k¼1

Dk: (1)
Subject to:

X

Oi 2Batchk

XNO location

j¼1

vij � CAPPF 8 k; (2)

XNO location
j¼1

vij � CAPPF;

i ¼ 1; 2; � � � ;NO order;

(3)

[ NO batchBatchk ¼ S; (4)
k¼1

\ NO batch
k¼1 Batchk ¼ ? ; (5)
where Batchk is the batch (tour) k; CAPPF the capacity

of the order picking facility; Dk the distance traveled in

batch (tour) k, Dk � 0; NO_batch the number of

batches formed; NO_location the number of locations

(items) in the warehouse; NO_order the number of

orders to be picked; S ¼ fO1;O2; . . . ;OMg, the set of

orders to be picked; vij the volume of item j to be

picked to fulfill order i, vij �0.

In the above formulation, Constraint (2) limits the

volume of items of all orders in one batch. Constraint

(3) states that the total volume of any order cannot

exceed the capacity of order picking machine.

Constraint (4) necessitates that all orders must be

picked, and Constraint (5) prohibits dividing any order

into two or more batches.

It is extremely difficult to obtain an exact solution

for the above mathematical model since the total travel

distance
P

Dk in the objective function depends on the

configuration of formed batches and the layout of

warehouse. Only a very limited amount of research

applied the optimization technique to the batching

procedure. Additionally, the batching optimization

methods based on integer programming are restricted

to small-scaled problems, which only have a small set

of orders [6,7].

Researchers have developed several order batching

heuristics since it is very difficult and maybe

impractical to obtain exact solutions with reasonable

computation efforts. A number of batching heuristics

[5,8–12] have been introduced in the literature. The

paper by van den Berg [4] has made a survey of these

batching heuristics. Instead of directly minimizing the

distance traveled by operators and/or S/R (storage/

retrieval) machines, previous studies considered

various order proximity and distance approximation
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measures to cluster orders. In a comparative study of

batching heuristics, Pan and Liu [13] recommended a

heuristic of Hwang et al. [11], which partitions the

rack into clusters of storage locations and measures

proximity between orders by the overlap in clusters.

Similar to the optimization based methods, most

batching heuristics developed previously also con-

centrated on resolving problems with a small amount

of orders.

Furthermore, a relatively simple environment of

warehouse with a single-aisle layout was tackled in

previous studies such as Refs. [5,8,9,11–14]. Gibson

and Sharp [10] has developed a batching method for a

more realistic warehouse environment with a parallel-

aisle layout and a large set of orders. To simplify the

large-scale order batching problem, Gibson and Sharp,

however, considered a distance approximation mea-

sure being the sum of distances between each item of

seed order and the closest item in the candidate order.

In addition, Gibson and Sharp showed that their

approximation approach outperformed the method of

space filling curves given in [14].

Most previous heuristics first pick a seed order for a

batch and afterward expand the batch with orders that

have a close relationship with the seed order. Such a

batch is expanded until the limit of capacity of storage/

retrieval (S/R) machine is reached. The order batching

problem is complicated because the computation of

total travel distance relies on the structure of batches

and the layout of warehouse. The essential issues of

these batching methods are defining measures for the

proximity of orders/batches and approximating travel

distance or travel time. Therefore, previous studies

have mainly focused on the order batching problems in

the relatively simple warehouse with a single-aisle and

2D layout. In such warehouse architecture, product

items are retrieved from the known storage locations

only with horizontal travel; therefore vertical move-

ment of picking facility may be disregarded. In the

advanced warehousing systems (e.g., automated

storage/retrieval system, namely AS/RS), a 3D layout

is frequently adopted to increase the cubic utilization

of storage space. The calculation of travel distance is

made more complicated to simultaneously take

horizontal and vertical movements into consideration.

Additionally, the proximity measures and approxi-

mated distance metrics are not suited for the case of

3D warehouse environment.
Instead of using proximity measures and approx-

imating travel distances, this paper attempts to

develop an optimization approach for order batching

by directly minimizing the total travel distance as

expressed in Eq. (1). Genetic algorithms (GAs) have

been successfully applied to a wide array of difficult

real-world problems [15–17]. GAs do not have many

mathematical requirements for optimization problems

and can deal with any kind of objective functions and

constraints defined in discrete, continuous, or mixed

search spaces [15]. Due to the great flexibility of GAs,

additionally, they enable the efficient implementation

of a specific solution by hybridizing domain-depen-

dent heuristics. Therefore, it is beneficial to develop an

order batching approach based on GAs, which directly

minimizes the total travel distance. Furthermore, the

GA-based batching method, namely GABM, can

resolve problems with any kind of batch structure

and any kind of warehouse layout. The proposed

GABM approach does not require the computation of

order/batch proximity and the estimation of travel

distance.

This paper provides a near-optimal solution based

on GAs for order batching in the warehousing systems.

The proposed GABM approach automatically groups

a sizeable set of customer orders into batches in an

optimal way. The rest of this paper is organized as

follows. Section 2 presents the proposed GABM

approach for order batching, which directly minimizes

the total travel distance. Section 3 reports the

computational results. Finally, Section 4 concludes

this study.
2. The proposed order batching approach

2.1. Basics of genetic algorithms

Genetic algorithms (GAs) were first introduced by

Holland [18], who was inspired by the notion of

natural and biological evolution. In GAs, the concept

that mimics from population genetics and evolution

theory is used to construct the optimization algo-

rithms. They attempt to optimize the fitness of a

population of elements through recombining and

mutating their genes. To apply the genetic evolu-

tionary concept to a real-world optimization problem,

two issues must be addressed: encoding the potential
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solutions, and defining the fitness function (objective

function) to be optimized.

A solution, namely a chromosome, is encoded as a

string composed of several components (genes). The

initial population of chromosomes is generated

according to some principles or randomly selected.

The algorithm performs an evaluation to measure the

quality (fitness) of the potential solutions. Optimiza-

tion using GAs is achieved by (a) selecting pairs of

chromosomes with probabilities proportionate to their

fitness, and (b) matching them to create new offspring.

In addition to matching (crossover), small mutations

are induced in new offspring. The replacement of bad

solutions with new solutions is based on some fixed

strategies. The chromosomes evolve through succes-

sive iterations, called generations. The evaluation,

optimization and replacement of solutions are

repeated until the stopping criteria are satisfied [16].

The general structure of GAs can be described as

follows [19].

Procedure: genetic algorithms
Step 1. D
efine a genetic representation of a feasible

solution of the problem.
Step 2. C
reate an initial population Pð0Þ ¼ x0
1; . . . ;

x0
N . Set t = 0.
Step 3. CP
ompute the average fitness f̄ðtÞ ¼
N
i f ðxiÞ=N. Assign each individual the

normalized fitness value f ðxiÞ=f̄ðtÞ.

Step 4. A
ssign each xi a probability p(xi, t) propor-

tional to its normalized fitness. Using this

distribution, select N individuals from P(t).

This gives the set of the selected parents.
Step 5. P
air all parents at random forming N/2 pairs.

Apply crossover with a certain probability to

each pair.
Step 6. A
pply mutation with a certain probability to

each offspring.
Step 7. F
orm a new population P(t + 1) by using the

surviving mechanism.
Step 8. S
et t = t + 1 and return to Step 3.
There are three major advantages when applying

GAs to optimization problems [15]. First, GAs do not

have many mathematical requirements for the opti-

mization problems and can handle any kind of obje-

ctive functions and constraints defined in discrete,

continuous, or mixed search spaces. Second, the er-
godicity of evolution operators makes GAs very eff-

ective at performing global searches (in probability)

and finding global optima. Third, GAs provide a great

hybridizing flexibility with domain-dependent heur-

istics to enable the efficient implementation of a sp-

ecific solution. GAs have been successfully applied to

a wide array of difficult real-world problems [15–17].

Goldberg [16] compared GAs with conventional se-

arch techniques including a calculus-based method,

enumeration method and random method. He found

that GAs could be highly efficient and reliable in

solving the combinatorial, unimodal and multimodal

problems. These results indicate that GAs are robust,

even in a complex solution space and concurrently

show efficiency and efficacy. Detailed discussions on

the foundation of GAs can be found in [15–17].

2.2. The GA-based batching method

As abovementioned, the exact solutions of order

batching problems are extremely difficult to obtain

since the function of total travel distance is dependable

on the configuration of formed batches and the layout

of warehouse. By taking the advantages of GAs, we

develop a GA-based optimization approach to deal

with the order batching problem with any kind of

batch structure and any kind of warehouse layout. In

addition, a domain-dependent heuristic is incorpo-

rated into the GA procedure to efficiently generate

solutions meeting the capacity limitation.

To apply GAs to resolving the order batching

problems, the encoding of a solution, the fitness

function and evolutionary mechanisms are defined as

follows.

2.2.1. Encoding of solution

In an order batching problem, the feasible solution

is encoded through a string composed of integers,

which group each order into a specific batch. For

example, the string of integers (1,2,3,2,1,3) groups the

orders 1 and 5 into batch 1, the orders 2 and 4 into

batch 2, and the orders 3 and 6 into batch 3 in a order

batching problem with six orders.

2.2.2. Fitness function

The total distance traveled of an order picking

mechanism can be determined by using the information

about facility layout in a warehouse. To minimize the
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operating cost of a warehousing system, it is desired to

decrease the total distance traveled. Hence, the fitness

function that we want to maximize can be defined as

Fitnessi ¼ DistanceL  Distancei

where DistanceL is the longest travel distance among

the current feasible solutions; Distancei and Fitnessi

are the travel distance and fitness value of a feasible

solution i.

2.2.3. Crossover mechanism

A two-point crossover method is utilized in the

proposed approach. After exchanging genes in cross-

over, the obtained offspring strings may be infeasible

due to the violation of capacity restriction. Therefore,

a correction mechanism is suggested to adjust the

infeasible solutions to meet the capacity restriction.

By randomly selecting two crossover points, the

paired chromosomes (feasible solutions) mutually

exchange information and structures of genes. For

example, randomly generating two crossover points

(CP1 = 4 and CP2 = 11), the paired solutions exchange

components as follows:

To ensure that the volume of each batch in each

feasible solution can meet the limited capacity of

picking facility, some corrections for the matched

paired solutions are required. Before presenting the

correction mechanism, some notations are firstly

defined as follows:

CAPPF: the capacity of picking facility;

Oi: order i, for i = 1, 2,. . ., NO_order;

Batch(Oi): the batch that order Oi is grouped into;

Vol(j): the volume of the batch j, j = 1, 2,. . .,
NO_batch;

Batch_DistOld(Batch(Oi)): the distance that the origi-

nal batch (Batch(Oi)) travels, for i = 1, 2, . . .,
NO_order;

Batch_DistNew(Batch(Oi)): the distance that the new

batch (Batch(Oi)) (after removing the order Oi)

travels, for i = 1, 2, . . ., NO_order;
Batch_DistOld(j): the distance that the original batch j

travels, for j = 1, 2, . . ., NO_batch;

Batch_DistNew(Batch(j, Oi)): the distance that the new

batch j (after adding the order Oi) travels, for

i = 1, 2, . . ., NO_order and i = 1, 2, . . ., NO_batch.

The correction mechanism is designed to move

orders from the over capacitated batches to other b-

atches with surplus capacity. Provided that several

such batches exist, the criterion of maximum impr-

ovement in distance traveled is brought into play. The

correction mechanism can be algorithmically stated as

follows.

Correction mechanism

For each order Oi

{

If (Vol(Batch(Oi)) > CapaPF)

{

Dist_Imp(k) = Batch_DistOld(Batch(Oi)) +

Batch_DistOld(k)
Batch_DistNew(Batch(Oi)) 

Batch_DistNew(k, Oi),
for k = 1, 2, . . ., NO_batch;

Dist_Imp(k*) = Max(Dist_Imp(k));

Batch(Oi) = k*;

}

}

2.2.4. Mutation mechanism

The mutation mechanism allows each component

in a solution exchanging its information with another

randomly selected component with a very small

probability, i.e. the mutation rate. The mutation

mechanism can be illustrated as follows:

Notably, the paired components can only exchange

their information while each batch can still meet the

capacity limitation of picking facility.

2.2.5. Selection mechanism

The selection mechanism forms a matching pool by

selecting a certain number of solutions from the

current feasible solutions. The probability with which
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a feasible solution i is selected into this matching pool

is proportional to its fitness value Fitnessi, that is, the

roulette wheel selection is adopted herein.

2.2.6. Surviving mechanism

In the present approach, the probability with which

a feasible solution can survive in the next generation

(cycle) is determined by

Surv Proi ¼ ð1  Pro BaseÞRanki (6)

where Surv_Proi is the surviving probability of solu-

tion i; Pro_Base the small probability, e.g. 0.05;

Ranki the rank of solution i by ranking the fitness

values in a descending order.
3. Performance study

To demonstrate the effectiveness of the proposed

GA-based approach to medium- and large-sized order

batching problems, we present computational results

with 10 test examples, referred to as Problems 1–10,

generated in a random manner. Problems 1–6 and

Problems 7–10 are test examples for 2D and 3D

warehouse layouts, respectively. The basic description

of these problems is summarized in Table 1. This table

includes the following information of test problems:

number of customer orders (NO_order), number of

products items or locations in the warehouse

(NO_location), total volume of items of all orders

(VOLtotal), capacity of picking facility (CAPPF) and

minimum possible number of batches (NO_batchmin).

The minimum possible number of batches is

calculated by NO_batchmin = bVOLtotal/CAPPFc. The

proposed GABM approach is coded in Visual C++ 6.0,

and it is run on an IBM compatible PC with a Pentium

IV processor.
Table 1

Summary of test examples

P1 P2 P3 P4

No. of orders 40 80 100 200

No. of items 80 160 200 300

Total volume 970.3 1550.5 1928.2 7231.6

Capacity 100 100 100 200

Minimum no. of batches 10 16 20 37

Layout 2D 2D 2D 2D
The schematic layout of warehouse considered in

this experimental study is illustrated in Fig. 1. The

warehouse is rectangular and consists of a number of

parallel pick aisles. A depot coordinates the flow of

order picking in the warehouse. A picking tour consists

of a picker and/or picking machine leaving the depot,

making a tour with the S-shape strategy [20] through a

storage zone, and returning to the depot. For the aisle

structure shown in Fig. 1, an order picker enters every

aislewherean item has tobepicked and travels the entire

aisle. An exception is made for the last aisle provided

that the number of aisles traveled in a tour is odd.

To conduct the experimentations, the following

assumptions are made [5,20]:
(1) A
P5

14

2D
ll order data are acknowledged beforehand.
(2) S
plitting any order among two or more batches is

not permitted; therefore the maximum order

volume is lesser than the capacity of S/R facility.
(3) T
he location of depot is located at the left corner

in the warehouse zone.
(4) I
tems are retrieved from the known storage

locations within a warehouse with horizontal

travel; therefore vertical movement of picking

facility may be disregarded. This assumption will

be relaxed in the problems of 3D layout.
(5) A
t the same time, pickers retrieve product items

from the right and left sides within an isle.
(6) P
icking facilities are able to traverse an aisle in

both directions.
Notice that the proposed GA-based batching me-

thod can be applied to any kind of warehouse layouts.

The above assumptions are made for the basis of

experimentations, and most of them can be relaxed

due to the mathematical flexibility of GAs.

Most previous studies have studied the order

batching problems in the cases of single-aisle
P6 P7 P8 P9 P10

250 300 100 200 250 300

400 200 200 300 400 200

638.3 3409 1928.2 7231.6 14638.3 3409

500 100 100 200 500 100

30 35 20 37 30 35

2D 3D 3D 3D 3D
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Fig. 1. The schematic layout of warehouse.
situations. Gibson and Sharp [10], however, have

developed an order batching method for warehouses

with a similar layout as sketched in Fig. 1. Their

approach is based on the approximated distance

metric. They assumed that each item’s aisle location in

a warehouse is known but did not consider an item’s

specific location within an aisle. Due to the use of

approximated distance metric, Gibson and Sharp [10]

simplified the calculation of travel distance. Their

proposed batching approach could speedily generate

heuristic solutions for the relatively large batching

problems. However, the approximated distance may

deviate far from the actual distance traveled. Due to

that the order picking is a routine task in warehousing,

even a small amount of improvement can result in

significant savings for companies. The first-come first-

served (FCFS) batching heuristic is straightforward

[10]. However, this batching method is frequently
Table 2

Summary of batching results for 2D problems by using FCFS

P1 P2 P3 P4 P5 P6

NO_batch 12 18 22 40 32 37

Distance 912.0 2737.0 4230.0 11032 12480.0 7120.0

Daverage 76.0 152.1 192.3 275.8 390.0 192.4

Dstdev 0 10.4 5.9 19.3 10.7 9.3

Utilization

(%)

80.9 86.1 87.6 87.9 91.5 92.1

Ustdev 19.6 17.0 10.4 12.1 10.8 11.6
implemented in warehouses due to its simplicity. For

the FCFS batching heuristic, the first n orders from the

input order list are clustered so that the batch size is as

close to the capacity of picking facility as possible.

Then, the next m orders are clustered. The batching

process is performed until all the orders are batched.

In this paper, our GA-based batching method

(GABM) is, therefore, compared to the Gibson and

Sharp’s batching method (GSBM) and the FCFS

method. The FCFS method can be described as a

baseline for comparison with the proposed GA-based

order batching approach. Table 2 lists the following

results of FCFS: number of batches formed

(NO_batch), total travel distance (Distance), average

distance per batch (Daverage), standard deviation of

distance (Dstdev), average utilization (%) of S/R

machine per batch (Utilization) and standard deviation

of utilization of S/R machine (Ustdev). The order

batching scheme primarily aims to minimize the travel

distance. As a result, the travel time and picking cost
Table 3

The GA-specific parameters

Population size 20

Maximum generation 500

Crossover rate 0.6

Mutation rate 0.05

Consecutive generationsa 40

a The maximum number of consecutive generations in which the

best fitness function cannot be further improved.
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Table 4

Summary of batching results for 2D problems by using GABM

P1 P2 P3 P4 P5 P6

NO_batch [10, 10] [16, 16] [20, 20] [37, 37] [30, 30] [35, 35]

Distance [711, 719] [2200, 2200] [3244, 3284] [8336, 8421] [9805, 9905] [4911, 4935]

Daverage [71.1, 71.9] [137.5, 137.5] [162.2, 164.2] [225.3, 227.6] [326.8, 330.2] [136.4, 140.7]

Dstdev [7.5, 8.9] [9.3, 9.3] [14.2, 21.4] [18.2, 25.9] [26.3, 34.0] [17.3, 22.7]

Utilization [97.0, 97.0] [96.9, 96.9] [96.4, 96.4] [95.0, 95.0] [97.6, 97.6] [94.8, 97.5]

Ustdev [2.9, 4.5] [2.6, 2.6] [2.5, 4.5] [3.9, 8.0] [2.0, 3.2] [2.0, 5.9]

CPU time (s) 19.7 170.9 2458.1 1762.4 1502.3 1031.9

*The values in [a, b] respectively indicate the minimum and maximum of each performance measure in 10 runs.

Table 5

Summary of batching results for 2D problems by using GSBM

P1 P2 P3 P4 P5 P6

NO_batch [11, 12] [16, 18] [20, 21] [38, 39] [31, 31] [35, 36]

Distance [793, 907] [2507, 2657] [3582, 3814] [9169, 9571] [10564, 10933] [5400, 5683]

Daverage [72.1, 76.0] [147.4, 151.1] [175.2, 181.6] [241.3, 251.8] [344.2, 352.7] [150.0, 157.9]

Dstdev [1.4, 7.3] [7.4, 15.8] [14.5, 21.4] [21.8, 28.6] [23.5, 37.7] [20.2, 23.8]

Utilization [80.9, 88.2] [86.1, 91.2] [91.8, 96.4] [90.2, 92.5] [94.4, 97.6] [94.8, 94.8]

Ustdev [16.2, 23.8] [15.7, 23.3] [6.4, 20.6] [10.7, 17.6] [1.6, 16.2] [13.1, 14.6]

CPU time (s) 0.5 1.1 1.8 2.3 2.6 2.8

Table 7
can be reduced in warehousing. The lesser number of

batches may incur less shifting cost of batch. The

number of required order pickers and/or picking

facilities may equal to the number of batches provided

that the set of customer orders being batched is

processed simultaneously. Additionally, the workload

balance of each batch in picking operations is an

essential concern, and it can be evaluated in terms of

standard deviation of distance and standard deviation

of utilization of S/R machine.

The initial population for the GA-based batching

method (GABM) is generated in a random manner.

Additionally, the GA-specific parameters are listed in

Table 3. The seed order of GSBM is also picked in a

random manner. Due to the stochastic nature of

GABM and GSBM, 10 runs are performed for these

five test examples. Tables 4 and 5 summarize the
Table 6

Comparisons of distances of GABM, GSBM and FCFS for 2D

problems

P1 P2 P3 P4 P5 P6

dGABM/dFCFS 0.79 0.81 0.77 0.76 0.79 0.69

dGSBM/dFCFS 0.93 0.94 0.88 0.85 0.87 0.79

dGABM/dGSBM 0.85 0.86 0.87 0.89 0.91 0.88
batching results of GABM and GSBM, respectively.

The results listed in these two tables present the

minimum and maximum values for each performance

measure in the 10 experimental runs.

From Tables 4 and 5, GSBM and GABM lead to a

considerable improvement compared to the straight-

forward FCFS strategy. Table 6 summarizes the

distance improvement of GABM to GSBM and FCFS.

From Tables 4–6, GABM achieves much improve-

ment against GSBM. The proposed GABM not only

forms less number of batches, but also reduces the

travel distance. Although GABM acquires the less

number of batches increases the batch size, it does not

increase the travel distance. It is due to that the number

of locations visited is extensively reduced with a better
Summary of batching results for 3D problems by using FCFS

P7 P8 P9 P10

NO_batch 22 40 32 37

Distance 3488.0 7894.0 10668.0 5784.0

Daverage 158.5 197.4 333.4 156.3

Dstdev 14.4 27.3 31.7 20.0

Utilization 87.6 87.9 91.5 92.1

Ustdev 10.4 12.1 10.8 11.6



C.-M. Hsu et al. / Computers in Industry 56 (2005) 169–178 177

Table 8

Summary of batching results for 3D problems by using GABM

P7 P8 P9 P10

NO_batch [21, 21] [38, 39] [31, 31] [36, 36]

Distance [2563, 2602] [4889, 5023] [6050, 6238] [2705, 2807]

Daverage [122.0, 123.9] [126.9, 131.8] [195.2, 201.2] [75.1, 78.0]

Dstdev [17.7, 21.5] [22.6, 28.3] [34.9, 44.6] [13.8, 20.5]

Utilization [91.8, 91.8] [90.2, 92.5] [94.4, 94.4] [94.7, 94.7]

Ustdev [6.8, 14.5] [6.1, 13.7] [5.5, 8.7] [4.2, 6.4]

CPU time (s) 4601.4 19957.0 14700.2 16235.9
batch picking program. The higher utilization of

picking facility may decrease the number of batches

formed without increasing the travel distance. For the

workload balance, GABM provides better results in

terms of standard deviation of travel distance and

standard deviation of utilization. The lower standard

deviations of travel distance and S/R utilization

indicate the better workload balance.

Problems 7–10 are test examples for 3D warehouse

layouts. In these four test problems, the information of

product item and customer order is duplicated from

Problems 3–6. Apart from the height of five racks, the

layout of 3D warehouse considered in this experi-

mental study is similar to the one as shown in Fig. 1.

As mentioned, GSBM was developed for order

batching problems with the parallel-aisle and 2D

warehouse environment. It is not suited for dealing

with batching problems with 3D layouts. Therefore,

Problems 7–10 are only resolved by the proposed

GABM approach. Their computational results are

compared with those obtained by FCFS. Tables 7 and

8 summarize the results of FCFS and GABM,

respectively. Table 9 compares the total travel

distances between FCFS and GABM. From these

tables, GABM significantly outperforms FCFS in

order batching problems of 3D layout.

The major objective of order batching is to minimize

total travel distance. Observing the comparisons in

Tables 6 and 9, it is worthy for GABM to require more

computational efforts. In this experimental study, the

longestCPUtimesofGABMin2Dand3Dproblems are
Table 9

Comparisons of distances of GABM and FCFS for 3D problems

P7 P8 P9 P10

dGABM/dFCFS 0.74 0.63 0.58 0.48
0.7 and 5.5 h, respectively. In practice, the warehouse

operates on a batch principle. The planning of the day’s

work (e.g., the orders that are to be processed are

grouped into batches) usually occurs the day before.

Therefore, the proposed GABM approach can be

potentially implemented in the real-world warehousing

operations. Definitely, the computation time can be

reduced if a more powerful computer is used.
4. Conclusions

In order to improve the customer service level,

products may wait in warehouses for just a short time.

Therefore, hurrying the movement of products in

warehouses has continued to become an essential issue

for warehouse administrators. They are interested in

discovering the most economical way of picking

customer orders which minimizes the costs contained

in terms of distance traveled and/or time spent.

Previous studies have mainly focused on the order

batching problems in the relatively simple warehouse

with a single-aisle and two-dimension layout. In the

advanced warehousing systems, a three-dimension

layout is frequently adopted to increase the cubic

utilization of storage space. In this paper, we propose

an GA-based order batching method (GABM) for

atomatically grouping customer orders into batches. It

is extremely difficult to obtain an optimal solution

effectively for the mathematical model of order

batching since the total travel distance depends on

the configuration of formed batches and the layout of

warehouse. Instead of using proximity measures and

approximating travel distances, this paper develops an

optimization approach for order batching by directly

minimizing the total travel distance. Furthermore, the

proposed GABM approach can resolve problems with
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any kind of batch structure and any kind of warehouse

layout. The potentials of our GABM approach for

solving the medium- and large-sized order batching

problems is demonstrated by the present computa-

tional results with several examples. The results

encourage the development of an effective optimiza-

tion method based on genetic algorithms to resolving

the real-world order batching problems.
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