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Abstract

In this paper we consider the vehicle routing problem with soft time window constraints (VRPSTW), in which vehicles
are allowed to service customers before and after the earliest and latest time window bounds, respectively. This relaxation
comes at the expense of appropriate penalties that re3ect the e4ect that time window violations have on the customers’
satisfaction. The problem is of particular importance for 3eet planning as it allows decision-makers from both the logistics
and marketing-sales side to determine minimal 3eet sizes by appropriate contract negotiations for order delivery times. To
solve the problem, we couple the nearest-neighbour method with a problem generator that provides, in a structured manner,
numerous instances that result from the manipulation of the level of time window violations and the population of customers
that allow such violations. The proposed heuristic results in solutions that reduce the number of vehicles required for the hard
case and provide minimal violations of time windows. Computational results on a set of benchmark problems show that our
method outperforms previous approaches to the vehicle routing problem with soft time windows, and that it can serve as the
basis for e9cient and e4ective 3eet planning.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Typical 3eet planning occurs when decision makers from
both the logistics and the marketing-sales department con-
fer in order to determine the minimum 3eet size required
to service the customers to which the sales department has
promised deliveries within speci>c time windows, i.e., time
bounds that constrain the earliest and the latest time that de-
liveries can take place. Customers have enforced the use of
time windows during the last few years in all aspects of dis-
tribution, motivated by the Just-in-Time principles and the
awareness of the competitiveness arising from adopting such
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principles, e.g., minimum inventory, reduced cycle times,
just-in-time production, etc. [1]. Time windows establish
hard constraints to the delivery problem, and consequently,
according to well-known optimization results, the optimal
solution to this problem provides an upper bound on that
of the unconstrained one. Thus, due to time windows, dis-
tribution companies or manufacturers sustaining their own
delivery vehicles, have to increase their 3eet size in order
to cope with hard time window requirements. The latter can
only be a4ected during the sales negotiation phase, where
all issues pertaining to orders and contracts take place. Pro-
viding e4ective tools to the sales-marketing department of
a company, which allow for time window adjustments that
can reduce vehicle 3eet size during sales negotiation, is of
paramount importance. In this paper we propose an approach
to derive exactly this result, i.e., relax some time windows
and reduce the vehicle 3eet size compared to the 3eet size
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required in the hard case, while keeping time window vio-
lations to a bare minimum.

The problem we address can be accurately described as
follows. Consider a central depot consolidating several items
that have to be delivered to a set of customers. The latter
are geographically dispersed within a distance radius that
allows for demand to be satis>ed through daily deliveries.
We assume that customer demand is known when a delivery
schedule is determined, as is the distance and travel time
between the depot and each customer locations, as well as
between each pair of customers’ locations. In addition, the
time interval during which the delivery has to take place
is also known (>xed when sales are >nalized by the Sales
and Marketing department). This interval is bounded by the
earliest and latest time of the day that the delivery to a
particular customer has to be completed. In contrast to the
vehicle routing problem with hard time windows that should
not be violated in any feasible solution, in the problem we
tackle, time windows are “soft”, i.e., they can be violated in
the earliest or latest service times during the solution stage,
by introducing appropriate penalties to re3ect a measure of
customer “non-satisfaction” if such violations occur. This
means that when solving the problem, if a vehicle arrives
too early or too late compared to the time window bounds,
it may start the service of the respective customer, at the
expense of a penalty that is proportional to the extent of
the time window violation. The penalty is assumed to be a
linear function of the amount of time window violation [2]
and, in practice, includes the cost of warehousing, e4ect on
customer satisfaction, etc.

The VRPSTW is a relaxation of the vehicle routing prob-
lem with time windows (VRPTW), which in turn, is a gen-
eralization of the classical vehicle routing problem (VRP).
Because of the wide applicability in practical cases of the
VRP and the VRPTW, both these problems have been ex-
haustively studied during the last couple of decades. The
interested reader can >nd surveys of the published work in
the areas of VRP and VRPTW composed by Golden and
Assad [3], Gendreau et al. [4] and Laporte [5], concerning
solution methods developed for these problems in the 1980s
and 1990s. In contrast, the archival literature reveals very
little published work for the vehicle routing problem with
soft time windows. Below, we examine the limited research
e4orts for the VRPSTW.

Balakrishnan [2] formulated the VRPSTW, using a linear
penalty function for each customer to de>ne the permissible
limits of the left and right violation of the customers’ earliest
and latest service times, respectively. The resulting model
was solved using either a transformed nearest-neighbour
method or a penalty-expanded savings method, which pro-
vide low-cost schedules involving fewer vehicles compared
to the case of hard time windows. The author presented the
computational results of the proposed methods on the exam-
ple sets R101, R102, R103, R-109, RC101, RC102, RC103
and RC106 of Solomon [6]. However, the results on the re-
maining problem sets of Solomon [6] were not reported, and

time window violations were quite severe for some of the
example problems solved.

Koskosidis et al. [7] treated time windows as soft con-
straints that could be violated at a cost, and decomposed the
optimization problem to a generalized assignment/clustering
component and a series of routing and scheduling com-
ponents, which were identical to travelling salesman prob-
lems with time windows. The proposed solution method was
tested on the benchmark problems of Solomon [6], as well
as on randomly generated problem instances. The results in-
dicated that the algorithm compares well to simple heuris-
tic methods for the hard case; however no extensive results
were obtained to guarantee the quality of the approach for
real-life large vehicle routing problems. Finally, Taillard
et al. [8] applied tabu search to the VRPSTW. The method
was shown to generate very good results for the hard case
but no concrete computational tests were performed to il-
lustrate the e4ect of “soft” time windows on the solution of
the routing problem and of the resulting 3eet size.

The approach proposed in this paper includes a gener-
ator of various instances of the vehicle routing problem,
each of which is characterized by a certain number of cus-
tomers for which the time windows can be violated. The
number of such “soft” customers varies from a small per-
centage of the total customer population, to the cardinality of
the set of customers. Each soft problem is solved using the
nearest-neighbour heuristic [6], in which the customer selec-
tion and insertion criteria are transformed to account for the
e4ect of time window violations through a penalty added to
the objective function. The approach, although based on a
simple solution procedure, provides results that consistently
outperform previously developed methods and signi>cantly
reduces the vehicle 3eet size with a small number of time
window violations and an acceptable average length of time
bound expansions. The implementation scheme is e4ective,
can provide attractive alternative solutions, and can be em-
ployed as a decision-making tool at the sales and contract
negotiation phase. Our key research contribution, therefore,
is the mechanism for generating soft-problems and the in-
tegration of the nearest-neighbour heuristic within an itera-
tive solution scheme, which provides better results than the
previously proposed methods.

The remainder of the paper is organized as follows: In
Section 2 we discuss the VRPSTW, while in Section 3 we
develop the proposed solutionmethod. Section 4 presents the
computational results of the new heuristic on literature and
web data sets, and compares these results with previously
published work. Finally, in Section 5 we summarize our
conclusions and provide pointers to further research.

2. Problem formulation

From a modelling perspective the VRPSTW can be stated
as follows: Find a set of closed routes, for a 3eet of |V |
identical vehicles (V = set of available vehicles, i.e., the
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Fig. 1. Lower and upper bounds of time window violations.

maximum number of vehicles that can be used for deliver-
ies) with known capacity C, servicing a set of customers,
from a central depot at minimum cost. The number of cus-
tomers is n − 1, i.e., |L| − 1 = n − 1, where L is the set of
customers including the depot, which is a distinct node of
the underlying connected graph. Indices i, j and u refer to
customers and take values between 2 and n, while index i=1
refers to the depot; an additional index k counts the vehicles
(k = 1; : : : ; |V |). Vehicles are initially located at the central
depot. Each customer i poses demand qi, and is bounded
by time window [ei; li] that models the earliest and latest
time that customer i can be serviced by a vehicle. These are
soft bounds that can be violated in the >nal solution. Fur-
thermore, a service time, si, is required for each customer
i. Each vehicle route originates and terminates at the cen-
tral depot, while each customer is serviced by exactly one
vehicle. There is a cost tcij , a travel time tij and a distance
dij associated with the path from customer i to customer j.
Furthermore, a cost wk is relevant to the activation of ve-
hicle k ∈V ; this is a one-time cost and it is related to the
>xed costs for the acquisition or activation of vehicle k.

The mathematical programming formulation of the
VRPTW requires two groups of variables. The >rst group
models the sequence in which vehicles visit customers, and
is de>ned as follows:

xkij =




1 if customer j follows customer i in the
sequence visited by vehicle k;

0 otherwise:

(1)

The second group of variables, zk , are binary and de>ned as
follows:

zk =

{
1 if vehicle k is active;

0 otherwise:
(2)

Note that a vehicle is active when it services at least one
customer.

For each customer i, let ai denote the time at which ser-
vice begins, cei the unit penalty for service initiated be-
fore its earliest service time, and cli the unit penalty for
service initiated after its latest service time. The values
of coe9cients cei and cli may vary according to customer

importance/criticality (i.e., very large values if a customer
is critical, forcing the solution to respect its time windows),
and by setting cei and cli equal to in>nity the VRPSTW can
be transformed into the hard VRPTW.

In addition, let lbvi be a user-de>ned lower bound on the
allowable time window violation, i.e., service may begin be-
tween lbvi and ei with penalty, but not before lbvi even if
the vehicle arrives at customer i before that time; in the lat-
ter case, the vehicle must wait until lbvi to begin service.
A similar bound (ubvi) is imposed on the right side of the
time window, i.e., on the latest service time; thus, a vehicle
that arrives between li and ubvi services the customer with
a penalty, while it is not feasible to service the customer if
the vehicle arrives after ubvi. Finally, a vehicle that arrives
between ei and li services the customer without any penalty.
The maximum limits on the allowable time window viola-
tions through lbvi and ubvi are imposed to contain possible
large violations that could be unacceptable for customers.
Fig. 1 illustrates the time bounds described above.

Each route must satisfy capacity constraints, which state
that the total quantity of goods delivered cannot exceed the
vehicle capacity C. The time window constraints, on the
other hand, can be relaxed via appropriate penalties in order
to reduce the total number of vehicles that are required. The
selection and context of the penalty function is critical for
the formulation and solution of the VRPSTW, since it a4ects
the weight of time window violations and, thus, the potential
for reducing the required vehicle 3eet size. The formula of
the penalty function is

Pi =




∞ if ai ¡ lbvi;

cei (ei − ai) if lbvi6 ai ¡ ei;

0 if ei6 ai6 li;

cli (ai − li) if li ¡ ai6 ubvi;

∞ if ubvi ¡ai:

(3)

Furthermore, we impose a maximum limit wtmax on the
waiting time of a vehicle at any customer, to contain
possible high levels of waiting times before customer
service begins, i.e.

aj − (ai + si + tij)6wtmax ; if xkij = 1: (4)
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Given the above de>nitions, we can proceed to the formu-
lation of the overall objective function for the VRPSTW,
which should include three components: route cost, vehicle
activation cost and time window violation cost. These com-
ponents are obvious in the objective function of (5):

Minimize
|V |∑
k=1

n∑
i=1

n∑
j=1

tcijx
k
ij +

|V |∑
k=1

wkzk +
n∑

i=1

Pi: (5)

The problem constraints are identical to those of the typi-
cal vehicle routing problem with time windows—except (4)
above and the time window bounds—and are, thus, omitted
here (see, e.g. [9]). The e4ect of time window violations
can be expressed in terms of the total average time window
deviation per customer, which is given by:

TATWD=

(∑
i

max{0; ei − ai}

+
∑

i

max{0; ai − li}
)/

n: (6)

The measure of (6) is critical since it provides an indication
of the size of the time window violations.

3. Solution method

The new heuristic we propose for the solution of
VRPSTW incorporates a problem instance generator and
a solution engine. The problem generator repeatedly pro-
duces soft time window problem instances, feasible to the
speci>cations of the original problem, which di4er in terms
of the number of customers that have soft time windows
and the allowable maximum time window violation. For the
solution engine, we employ the simple mechanism of the
nearest-neighbour heuristic (NNH). We implement NNH,
incorporating the penalty function of (3) as a factor in the
customer selection criterion.

3.1. The instance generator engine

The VRPSTW is a multi-dimensional problem based on
the di4erent size violations of time windows. For example,
allowing 0%, 5%, or 10% violation of the time window of
customer i, we can produce three di4erent problem sets.
Also, if we allow only some customers to have soft time
windows, while the remaining ones have hard time win-
dows, we can produce various problem instances as well.
To describe the problem instance generator engine we use
the following de>nition:

De�nition. A �-soft problem is an instance in which the
time windows of the >rst �% of the customers may be
violated.

Thus, a �-soft problem has at least (100-�)% customers with
non-violated time windows, since at most �% time windows
may be violated in a VRPSTW solution. After generating
a �-soft problem, the solution engine we describe in Sec-
tion 3.2 is evoked, and the resulting solution is examined.
From the customers with violated time windows, the gen-
erator selects customer i that has the minimum violation,
which is less than a tightness coe9cient �. The latter coef-
>cient allows the method to distinguish between small time
window violations that may be reversible, i.e., not violated
without a4ecting the vehicle 3eet size. The time window
of customer i is then >xed (hard time window) and the
problem instance is resolved. Thus, the generator engine al-
lows violations for the >rst �n�=100	 customers and selects
customer j, which satis>es the property below, for time win-
dow >xing:

Min
16i6�n�=100�;ai �∈[ei ;li ]

{max{ei − ai; ai − li}}6 �: (7)

It is obvious that our problem generator provides a wealth of
problem instances based on the values of parameters � and
�, and allows the solution method to search for a result with
minimal number of non-violated time windows. Note that
the procedure of >xing the values of problem parameters for
candidates that have small � values on a given solution has
been employed with excellent results in other problem areas,
e.g., the >xed charge capacitated network design problem
[10].

3.2. The solution engine

As our solution engine we have selected the simple and
fast mechanism of the nearest-neighbour heuristic expanded
with the penalty factor of (3). At every solution step, the
heuristic selects customer j with the lowest cost Cj for
inclusion after customer i in the route under construction.
The cost Cj can be mathematically expressed as:

Cj = bdtij + bafij + bugij + bpPj: (8)

In (8), the weights bd; ba; bu, and bp de>ne the relative
contribution of each individual metric to the overall selection
criterion, while bd+ba+bu+bp=1, and bd; ba; bu; bp¿ 0.
We can de>ne the last three sub-metrics of (8) as follows:

fij = aj − (ai + si) the time di4erence between
the completion of service at
customer i and the beginning
of service at customer j.

gij = lj − (ai + si + tij) the urgency of delivery to cus-
tomer j as expressed by the
time remaining until the cus-
tomer’s latest service time.

Pj the penalty of time window
violation for customer j.



G. Ioannou et al. / Omega 31 (2003) 41–53 45

The criterion of (8) ensures that a customer j selected for
inclusion in the route under construction will be closest to
the last selected customer (in terms of time and time window
in3uence) and will result in a small time window violation
penalty.

The procedure of customer insertion is repeated until no
further non-routed customer can be inserted into the route
under construction. In this case, a new route is initialized
with a di4erent customer and the loop is performed until all
customers are assigned to routes. NNH terminates by pro-
viding the number of routes, the number of active vehicles
(equal to the number of routes), the customers that are as-
signed to each vehicle, the sequence in which customers are
visited by vehicles, the number of non-violated time win-
dows, the cost of violations, the average of earliest time
violation, the average of latest time violation, and the av-
erage of total violation. Note that in our NNH implementa-
tion, various values of the parameters bd; ba; bu, and bp are
examined using a step of 0.1 for each of them.

3.3. The heuristic

For every solution, the problem generator determines a
customer for which time windows should be >xed, using the
Min-max criterion of (7). The revised problem is solved us-
ing NNH and the updated solution is stored. The procedure
is repeated for a variety of values of the � coe9cients, start-
ing from an initial � and ending when �=100, using a para-
meter  to increase � at each loop. The heuristic method,
which we entitle problem generator solver heuristic (PGSH),
is as follows:

Algorithm PGSH

Step 0: Initialization
Read n; �; C; �; wtmax ; bd; ba; bu; bp

Read tij ; ei; li ; cei ; cli ; lbvi; ubvi ∀i; j = 2; 3; 4; : : : ; n
Step 1: Soft Problem Generation

Create a �-soft problem using the problem genera-
tor

Step 2: Penalty-expanded NNH Solution
Solve the �-soft problem using NNH with the cri-
terion of (8)

Step 3: Time window ;xing
Identify customer j according to the criterion of (7)
Set Pj = 0 producing a new (�-1)-soft problem

Step 4: Solution revisiting
Solve the (�-1)-soft problem using NNH with the
criterion of (8)
If the number of vehicles has not increased, go to
Step 3
Otherwise go to Step 5

Step 5: �-change
Increase � by a >xed value,  (� = � +  )
If �¡ 100, go to Step 1
Otherwise go to Step 6

Step 6: Terminate
Output the following:

Number of routes
Number of non-violated time windows
Sequence of customers visited by each vehicle
Total distance (time)
Total cost
Average of total violation (TATWD)

Because the core of PGSH is the simple mechanism of NNH,
the solution of the multitude of problems created by the
instance generator increases the computational time of the
heuristic only moderately.

4. Computational results

Our method (PGSH) was implemented on a Pentium IV,
1 GHz PC. PGSH was >rst tested on the classical data sets
R1 and RC1 of Solomon [6]. Each data set contains prob-
lems with 100 customers. The Cartesian coordinates of cus-
tomers in the R1 problems of are randomly generated from
a uniform distribution, while the problems in set RC1 con-
tain semi-clustered customers, i.e., a combination of clus-
tered and randomly (uniformly) distributed customers. Sets
R1 and RC1 have tight time windows (10 time units), short
scheduling horizons (230 time units for R1 and 240 time
units for RC1) and vehicle capacity C=200 units, allowing
few customers per route. Also, inter-customer travel time is
assumed equal to the Euclidean distances. For additional in-
formation concerning the data sets, the reader is referred to
the original paper of Solomon [6].

In all computational experiments we have set the max-
imum waiting time (wtmax) and allowable penalty (Pmax)
equal to 10% of the maximum route time allowed (wtmax =
Pmax = 23 for R1 and wtmax = Pmax = 24 for RC1); Pmax

de>nes the values of the parameters lbvi and ubvi. Further-
more, the penalty coe9cients cei, and cli were set equal to 1
for each customer i, while the �-increase parameter  was set
equal to 5 and the initial value of � equal to 10. Finally, the
values of parameter ” examined were {1; 2; 3; : : : ; 22; 23}.
Table 1 presents the results of PGSH for problems in set

R1, while Table 2 those for set RC1. Three metrics for each
data set are reported: (a) the number of vehicles reached
by PGSH, (b) the percentage of non-violated time windows
(TW) for each vehicle 3eet size, and (c) the total aver-
age violation of time windows for each vehicle 3eet size
(TATWD). Note that we report several solutions for each
problem set (e.g., for R103 we report 4 solutions with 14,
13, 12 and 11 vehicles, and the respective measures of % of
non-violated time windows and TATWD). These solutions
come from the various problem instances solved by PGSH.
The last column of both Tables 1 and 2 includes the best
solution for the respective problem reported to-date.

It is evident from the results of these two tables that PGSH
determines solutions that reduce the number of routes (or of
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Table 1
PGSH and best solutions for Solomon’s benchmark problems—set R1

Problem Metric PGSH value Best solution

R101 Number of vehicles 21 20 19 18 17 16 15 14 18
% Non-violated TW 100 100 97 95 89 75 67 52
TATWD 0.0 0.0 0.1 0.3 1.0 3.7 3.8 5.3

R102 Number of vehicles 19 18 17 16 15 14 13 12 17
% Non-violated TW 100 100 98 93 89 81 74 62
TATWD 0.0 0.0 0.4 0.8 1.9 2.8 2.9 4.8

R103 Number of vehicles 14 13 12 11 13
% Non-violated TW 100 97 93 79
TATWD 0.0 0.1 1.1 2.2

R104 Number of vehicles 11 10 9 10
% Non-violated TW 100 96 79
TATWD 0.0 0.5 2.9

R105 Number of vehicles 14 13 12 14
% Non-violated TW 96 83 71
TATWD 0.6 2.3 3.5

R106 Number of vehicles 12 11 10 12
% Non-violated TW 95 80 55
TATWD 0.8 2.6 4.4

R107 Number of vehicles 10 10
% Non-violated TW 88
TATWD 1.9

R108 Number of vehicles 10 9 9
% Non-violated TW 100 85
TATWD 0.0 2.0

R109 Number of vehicles 13 12 11 11
% Non-violated TW 100 99 87
TATWD 0.0 0.1 1.5

R110 Number of vehicles 11 10 11
% Non-violated TW 100 82
TATWD 0.0 2.6

R111 Number of vehicles 10 10
% Non-violated TW 87
TATWD 1.4

R112 Number of vehicles 10 9 10
% Non-violated TW 100 85
TATWD 0.0 1.9

vehicles) through small violations of the time windows. For
example, in set R102, violating just 7% of the time windows
results in only 16 required vehicles, while the best solution
reported for the hard problem (no violations) is 17 vehicles.
This is an important result that could indeed be exploited by
sales when >nalizing the contracts that set time windows.

Tables 3 and 4 compare the number of vehicles used and
the percentage of non-violated windows of our method and
two methods previously reported in the literature for the soft
problem. The results of Balakrishnan [2] are presented in
column 3 (BAL) and those of Koskosidis et al. [7] in col-
umn 4 (KPS). Note that there are no previous results by any



G. Ioannou et al. / Omega 31 (2003) 41–53 47

Table 2
PGSH and best solutions for Solomon’s benchmark problems—set RC1

Problem Metric PGSH value Best solution

RC101 Number of vehicles 16 15 14 13 14
% Non-violated TW 100 100 92 87
TATWD 0.0 0.0 1.3 2.1

RC102 Number of vehicles 14 13 12 11 13
% Non-violated TW 100 98 89 80
TATWD 0.0 0.2 1.5 2.3

RC103 Number of vehicles 13 12 11 10 11
% Non-violated TW 100 100 93 81
TATWD 0.0 0.0 1.1 2.8

RC104 Number of vehicles 11 10 10
% Non-violated TW 100 93
TATWD 0.0 0.7

RC105 Number of vehicles 13 12 11 13
% Non-violated TW 89 76 60
TATWD 1.6 2.6 5.2

RC106 Number of vehicles 13 12 11 12
% Non-violated TW 100 99 87
TATWD 0.0 0.1 1.5

RC107 Number of vehicles 11 10 11
% Non-violated TW 94 60
TATWD 0.6 4.3

RC108 Number of vehicles 11 10 10
% Non-violated TW 100 90
TATWD 0.0 1.4

Table 3
Comparison between literature heuristics and PGSH for R1 problems

Problem Metric BAL KPS PGSH

R101 Number of vehicles 17 16 14 21 21 17 16 14
% Non-violated TW 72 55 44 100 100 89 75 52

R102 Number of vehicles 19 13 19 19 13
% Non-violated TW 100 63 100 100 74

R103 Number of vehicles 13 12 14 14 13 12
% Non-violated TW 86 68 100 100 97 93

R108 Number of vehicles 10 10 9
% Non-violated TW 100 100 85

R109 Number of vehicles 13 12 11 13 13 12 11
% Non-violated TW 100 90 67 98 100 99 87
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Table 4
Comparison between literature heuristics and PGSH for RC1 problems

Problem Metric BAL KPS PGSH

RC101 Number of vehicles 16 15 14 16 16 15 14
% Non-violated TW 100 96 68 95 100 100 92

RC102 Number of vehicles 14 13 14 14 13
% Non-violated TW 100 88 94 100 98

RC103 Number of vehicles 13 12 13 13 12
% Non-violated TW 100 92 100 100 100

RC106 Number of vehicles 13 12 13 13 12
% Non-violated TW 100 71 92 100 99

RC108 Number of vehicles 11 11
% Non-violated TW 99 100

Table 5
Comparison between PGSH and optimal solutions for hard problem

Problem R101 R102 C101 C102 C106 C107 C108

Optimal 18 17 10 10 10 10 10
PGSH 18 (95) 17 (98) 10 (100) 10 (100) 10 (100) 10 (100) 10 (100)

of the two methods for the soft version of problems R104,
R105, R106, R107, R110, R111, R112, RC105, RC105, and
RC107. In addition, in Tables 3 and 4 we omit the value
of TATWD, since neither Balakrishnan [2] nor Koskosidis
et al. [7] report this metric. The results of Tables 3 and 4
clearly show that PGSH provides better solutions compared
to the previously developed methods in all cases examined,
since for the same number of vehicles, it results in violation
of a smaller number of time windows. This represents a sig-
ni>cant improvement over existing methods through the use
of a very simple heuristic mechanism that is solely based
on the primitive nearest-neighbour heuristic. One could eas-
ily infer that the application of a more sophisticated method
could eventually produce even better solutions that violate
a smaller number of time windows and use signi>cantly re-
duced vehicle 3eet sizes.

The results of the new heuristic were also compared to
the existing optimal solutions reported by Desrochers et al.
[11]. The optimal solutions are presented in the second row
of Table 5, while the third row provides the PGSH solu-
tion (number of vehicles, and percentage of non-violated
time windows in parentheses). From Table 5, it is evident
that PGSH achieves the optimal solution with respect to the
number of vehicles in >ve of the seven test problems with-
out violating time windows.

To examine the e4ect of the various parameters of PGSH
on the solution quality, we provide in Table 6, for two

of the random and for two of the clustered problems, the
values of �; bd; ba; bu, and bp for which the solutions of
Tables 1 and 2 were obtained. From the data of Table 6, we
cannot infer a strong correlation between the quality of the
results and the value of ”. However, we can observe that
to obtain solutions with a small number of vehicles (i.e.,
smaller than the optimal number of vehicles in the VRP
with >xed time windows—e.g., 14 vehicles for R101) we
needed quite small values for this problem parameter (”=3).
Conversely, setting ” equal to large numbers compared to
time windows (e.g., ” = 23 for R101) was adequate for
obtaining solutions with larger vehicle 3eet (21 vehicles).
This was expected, since larger 3eet sizes can be reached
for the hard case as well, and large values of ” create almost
hard problems (i.e., from the >rst iterations of PGSH, most
time windows are >xed).

In addition, from the data of Table 6 we cannot extract
concrete conclusions concerning parameters bd; ba; bu, and
bp. Even a thorough examination of all the results we ob-
tained during our computational experiments did not provide
strong evidence about a consistently performing set of val-
ues for these parameters. Thus, we resorted to the recursive
value-change to guarantee PGSA solution quality. The com-
putational burden for PGSH is not unbearable, since NNH
is very fast, thus, the total time required to complete all iter-
ations is relatively small compared to complex evolutionary
methods such as genetic algorithms or simulated annealing.
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Table 6
PGSH parameters for sample data sets

Problem R101

Vehicles 21 20 19 18 17 16 15 14
� 23 23 23 23 20 7 7 3
bd 0.0 0.3 0.0 0.0 0.2 0.5 0.1 0.4
ba 0.1 0.2 0.1 0.4 0.5 0.1 0.7 0.4
bu 0.0 0.3 0.0 0.1 0.1 0.1 0.1 0.1
bp 0.9 0.2 0.9 0.5 0.2 0.3 0.1 0.1

R102

19 18 17 16 15 14 13 12
� 20 19 20 13 10 7 11 4
bd 0.2 0.2 0.5 0.3 0.4 0.1 0.0 0.3
ba 0.1 0.4 0.2 0.1 0.3 0.4 0.4 0.2
bu 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2
bp 0.6 0.3 0.2 0.5 0.2 0.3 0.4 0.3

RC101 RC102

16 15 14 13 14 13 12 11
� 17 22 16 10 12 23 14 10
bd 0.1 0.2 0.0 0.3 0.0 0.3 0.1 0.4
ba 0.2 0.1 0.7 0.4 0.3 0.1 0.7 0.4
bu 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1
bp 0.6 0.6 0.2 0.1 0.6 0.5 0.1 0.1

To further examine the performance of PGSH with re-
spect to the values of ”, we have plotted in Fig. 2 the PGSH
results for various ” values on the data of set R101. The
horizontal axis of the graph in Fig. 2 represents the value
of ” and the vertical axis the percentage of non-violated
time windows. The two data series in the graph re3ect the
results obtained concerning the percentage of non-violated
time windows in solutions with 17 and 16 vehicles, for
”∈{1; 2; 3; : : : ; 22; 23}. Furthermore, the two horizontal
lines at 55 and 72 represent the best solution for these two
examples reported by Balakrishnan [2].

From the data series of Fig. 2 we can observe that PGSH
outperforms the heuristic of Balakrishnan [2], irrespective of
the value of ” (apart from ”=1 for 17 vehicles). Furthermore,
the plot shows a rather steady performance of PGSH for all
”-values. The plot of Fig. 3, for 21 and 15 vehicles on set
R101, further justi>es this observation.

The number of iterations for a given ” are related to
the solution of PGSH. Fig. 4 presents the number of vehi-
cles and the percentage of violated time windows, at each
of the iterations of PGSH for ” = 23. From the results of
Fig. 4 we can infer the way PGSH proceeds: At the begin-
ning, PGSH provides solutions close to the NNH results for
the hard VRP case, without violating any time windows,
while as the number of iterations increase, PGSH derives
smaller vehicle 3eets by violating some time windows. Sim-
ilar curves were observed for all ” values. From a practi-

cal perspective, the evolution of PGSH can be bounded by
the percentage of time window violations allowed; i.e., set-
ting the maximum number of time window violations equal
to 5%, the algorithm terminates with 18 vehicles after ap-
proximately 1500 applications of NNH (including the itera-
tions due to the recursive change of the b-parameters). Note
that the total time required to complete the results of Fig. 4
was less than 3 min, time acceptable even for daily vehicle
scheduling.

Subsequently, we tested PGSH on larger problems ob-
tained from the Web [12]. The data sets contain 200 and 400
customers and maintain the features of the original exam-
ples of Solomon [6]. Note that in the literature few heuris-
tics and meta-heuristics are tested on large vehicle routing
problems with time windows—see, e.g., Ioannou et al. [9].
We tested PGSH on three problems with 200 customers and
three problems with 400 customers. The problem character-
istics are shown in Table 7.

Table 8 shows the solutions obtained by PGSH, the orig-
inal heuristic of Baker and Sca4er [13] noted by B&S, for
the hard case, and the Lower Bound on the number of
routes, for all problems of Table 6. The lower bound is given
by the ratio of the total customer demand and the vehicle
capacity [i.e., LB= (

∑
qi)=C]. Note, that there are no pub-

lished results for the VRPSTW for problems with more than
100 customers; thus we have used the B&S “hard” solutions
for comparison purposes.
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Fig. 2. PGSH results on R101 for 17 and 16 vehicles and various ”.
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Fig. 3. PGSH results on R101 for 21 and 15 vehicles and various ”.

0

20

40

60

80

100

120

22 519 1029 1550 2458 2711 3527 3907 4400

Number of Vehicles

Non-violated Time Windows

Fig. 4. PGSH results on R101 for ” = 23.

The results of Table 8 further support our observations
from Tables 1 and 2, i.e., that with small violations of the
time windows of very few customers the number of the
vehicles required to service the customer demand is reduced;
e.g., for problem R1 2 2, PGSH achieves a vehicle 3eet size

of 18, which is the lower bound on the number of required
vehicles, by violating the time windows of only 6 customers
(out of 200, i.e., only 3%).

Finally, we have applied PGSH on industrial data obtained
from a delivery company, which supplies goods to a large
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Table 7
Characteristics of large-scale problems

Data set Total Avg earliest Avg latest Average Time Service Percentage of time
(customers) Cargo time time TW width horizon time windows

R1 2 1 (200) 3513 255.7 265.7 10 634 10 100%
R1 2 2 (200) 3513 193.2 343.3 150.1 634 10 25%, 50 → (0; 570:3)

75%, 150 → (257:5; 267:5)
R1 2 3 (200) 3513 118.0 408.0 290.0 634 10 50%, 100 → (0; 570)

50%, 100 → (236:1; 246:1)
R1 4 1 (400) 7109 311.8 321.8 10.0 804 10 100%
R1 4 2 (400) 7109 231.7 419.8 188.1 804 10 25%, 100 → (0; 722)

75%, 300 → (308:9; 318:9)
R1 4 3 (400) 7109 153.0 518.8 365.8 804 10 50%, 200 → (0; 720:8)

50%, 200 → (306:8; 316:8)

Table 8
Results of PGSH on large-scale problems

Problem Metric B Lower bound PGSH

R1 2 1 Number of vehicles 24 18 22 21 20
(200 customers) Non-violated TW 197 195 189

TATWD 1.0 0.6 1.2

R1 2 2 Number of vehicles 22 18 19 18
(200 customers) Non-violated TW 199 194

TATWD 0.3 0.7

R1 2 3 Number of vehicles 23 18 19 18
(200 customers) Non-violated TW 199 195

TATWD 0.3 0.3

R1 4 1 Number of vehicles 50 36 42 41 40
(400 customers) Non-violated TW 389 382 370

TATWD 1.0 1.8 2.9

R1 4 2 Number of vehicles 43 36 39 38 37
(400 customers) Non-violated TW 399 385 365

TATWD 0.2 1.2 2.0

R1 4 3 Number of vehicles 42 36 38 37 36
(400 customers) Non-violated TW 397 393 374

TATWD 0.3 0.8 2.6

number of retail outlets throughout the Athens Metropolitan
area, in Athens, Greece. The number of customers is ap-
proximately two thousand and the company uses a 3eet of
40 vehicles, with capacity of 1000 cartons, to perform all
daily deliveries. Note that the number of vehicles was de-
termined from a previous study we had performed for this
company, the results of which are reported in [9]. Fig. 5
provides a partial view of the distribution of customers on
a map of the Athens Metropolitan area.

To be consistent with the examples reported in the lit-
erature, we assumed that travel times are equivalent to the

corresponding Euclidean distances. The time-window asso-
ciated with the depot is 3300 time units, equivalent to one
shift. A >xed service time of 10 time units for vehicle un-
loading is associated with each customer, and all customers
have time windows of 150 time units. Typically, time win-
dows are not violated by design but deliveries are performed
before the earliest service time or after the latest service time
in practice because of urgency and tra9c conditions. We
have asked the company to rank its customers with respect
to importance and we appropriately >xed the penalties Pi to
re3ect this ranking.
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Fig. 5. Distribution of customers for industrial problem.

The application of PGSH on this industrial example fur-
ther solidi>ed our computational experiments. We were able
to obtain a solution with 39 vehicles with only 12 time win-
dow violations (less than 1% of the total customer base), 38
vehicles with 50 time window violations (less than 3% of
the total customer base) and 37 vehicles with 70 time win-
dow violations (less than 5% of the total customer base).
Note also that a very small number of customers with vio-
lated time windows was allotted to each vehicle.

Furthermore, our interaction with the company’s man-
agement provided an additional use of PGSH: Given a set
of daily orders that must be satis>ed, a set of available
vehicles (which may be less than the vehicle 3eet because
of maintenance or employee unavailability), and an impor-
tance ranking of customers, which customers’ time windows
should be violated and by how much in order to complete
all deliveries? This is a very frequent question in real-life
situations, and PGSH can easily handle the underlying prob-
lem; i.e., search for a solution with the required number of
vehicles and provide the minimum time window violations
for this vehicle 3eet, thus responding to dynamic changes
in customer demand and variability of the vehicle 3eet
size.

5. Conclusions

In this paper we presented a new solution method for
the vehicle routing problem with soft time windows. The
solution engine of the method, which is based on the
nearest-neighbour heuristic appropriately expanded to ac-
count for a penalty associated with time window violations,
is applied on example sets created by our problem gen-
erator. The latter provides instances where vehicles are
allowed to service some of the customers before and/or
after their time windows. The problem is of particular im-
portance for 3eet planning and contract negotiations since

it allows decision-makers to determine the best trade-o4
between time window expansion and number of required
vehicles.

We have tested our method on benchmark problems with
100 customers form the literature and larger problems (200
and 400 customers) from the web. The results indicate that
the method is very e4ective and outperforms previously de-
veloped approaches for the VRPSTW. The success of our
method can be attributed to the wealth of problem instances
solved in a structured manner (using the �-soft problem gen-
erator).

The proposed approach could certainly bene>t from the
application of more advanced techniques for solving the
VRP, such as tabu search or simulated annealing. However,
one should be cautious in applying such methods in iterative
solution schemes, since computational times could expand
signi>cantly. Nevertheless, incorporating into the proposed
method more e9cient solution engines is an open research
avenue.

The real world is dynamic, thus, e4ective and e9cient de-
cision support tools are needed to address real word vehicle
routing problems, taking into account the important bene-
>ts that emanate from the soft version of the VRPTW and
exploiting the solutions provided by fast heuristics, to help
sales and logistics people make better trade-o4s during con-
tract negotiations and vehicle 3eet planning. The proposed
approach, PGSH, as demonstrated by the industrial exam-
ple, is a contribution in this pursuit.
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