Modulo Operation (mod) Algorithm and Examples

In computing, the modulo (sometimes called modulus, or mod) operation finds the remainder of division of one number by another. Given two positive numbers, a (the dividend) and n (the divisor), a modulo n (abbreviated as a $\bmod n$) is the remainder of the Euclidean division of a by n. For instance, the expression " 5 mod 2" would evaluate to 1 because 5 divided by 2 leaves a quotient of 2 and a remainder of 1 , while " $9 \bmod 3$ " would evaluate to 0 because the division of 9 by 3 has a quotient of 3 and leaves a remainder of 0 ; there is nothing to subtract from 9 after multiplying 3 times 3 . Note that doing the division with a calculator won't show the result referred to here by this operation; the quotient will be expressed as a decimal fraction. Although typically performed with a and n both being integers, many computing systems allow other types of numeric operands. The range of numbers for an integer modulo of n is 0 to n -1 ($n \bmod 1$ is always $0 ; n \bmod 0$ is undefined, possibly resulting in a "Division by zero" error in computer programming languages) See modular arithmetic for an older and related convention applied in number theory. When either a or n is negative, the naive definition breaks down and programming languages differ in how these values are defined.

Example 1. $a \bmod n \equiv a-\left[n \times \operatorname{int}\left(\frac{a}{n}\right)\right]$

$$
\begin{aligned}
& {[269.86]-\left[n \times \operatorname{int}\left(\frac{a}{n}\right)\right] } \\
= & 269-\left[100 \times \operatorname{int}\left(\frac{269.86}{100}\right)\right] \\
= & 269-[100 \times \operatorname{int}(2.6986)] \\
= & 269-[100 \times 2] \\
= & 69
\end{aligned}
$$

Example 2. $M_{t}^{b} \equiv\left[100 \times 10^{\left(\log _{t} P_{t}\right) \bmod 1}\right] \bmod 100$

$$
\begin{aligned}
& \left(\log P_{t}\right) \bmod 1 \\
= & \log (269.86) \bmod 1 \\
= & 2.4311 \bmod 1 \\
= & 2.4311-\left[1 \times \operatorname{int}\left(\frac{2.4311}{1}\right)\right]
\end{aligned}
$$

$$
=2.4311-2 \quad=269.83-200
$$

$$
=0.4311 \quad=69
$$

