
Appendix B. A Brief Review of Copulas Functions 

Copulas functions are a statistical tool which has many advantages. First, copulas 
make it possible to determine the nature of dependence of the series, be it linear or not, 
monotone or not. In addition to the fact that they over a great flexibility in the 
implementation of the multivariate analysis, copula authorizes a wider selection of the 
marginal distributions of the financial series. Second, they allow a less banal 
representation of the statistical dependence in finance based on the traditional 
correlation measure (Embrechts et al., 1997). Third, they authorize less restrictive 
univariate probability distributions which make it possible to better accounting for the 
stylized facts in finance (leptokurtosis, asymmetry, tail dependence). Fourth, they 
consider very general multivariate distributions, independently of the laws of the 
marginal ones which can have different laws and be unspecified. Furthermore, the 
copulas approach enables us to ease the implementation of multivariate models. 
Indeed, this approach allows the decomposition of the multidimensional law into its 
univariate marginal functions and a dependence function that would make possible 
extensions of some results obtained in the univariate case to the multivariate case. 
Hence, copula is an exhaustive statistic of the dependence. Finally, Patton (2006a) 
shows that copulas are useful extensions and generalizations of approaches for 
modeling joint distributions that have appeared in the literature.1 

Specifically, a copula, defined by Sklar (1959), is a function that links together 
univariate distribution functions to form a multivariate distribution function. If all of 
the variables are continuously distributed, then their copula is simply a multivariate 
distribution function with uniform (0, 1) univariate marginal distributions. Copulas 
have been used both in multivariate time series analysis, where they are used to 
characterize the (conditional) cross-sectional dependence between individual time 
series, and in univariate time series analysis, and are used to characterize the 
dependence between a sequences of observations of a scalar time series process.  

In the following, we refer Patton’s (2006b) work to illustrate the concepts of 
copula. Consider a vector random variable, 1 2[ , ,..., ]'nX X X=X , with joint distribution 
F  and marginal distributions 1 2, ,..., nF F F . Sklar’s (1959) theorem provides the 

1 The number of papers on copula theory in finance and economics has grown enormously in recent years. One of 
the most influential of the early papers on copulas in finance is that of Embrechts, McNeil and Straumann 
(2002). Since then, scores of papers have been proposed, exploring the uses of copulas in finance, 
macroeconomics, and microeconomics, as well as developing the estimation and evaluation theory required for 
these applications. Joe (1997) and Nelsen (2006) provide detailed and readable introductions to copulas and 
their statistical and mathematical foundations, while Ghysels, Gouriéroux, and Jasiak (2004) focus primarily on 
applications of copulas in mathematical finance and derivatives pricing. 

                         



mapping from the individual distribution functions to the joint distribution function: 

1 1 2 2( ) ( ), ( ), ..., ( ) ,    n
n nF x F x F xé ù= " Îë ûF x C x             (1) 

From any multivariate distribution, F , we can extract the marginal distributions, iF , 
and the copula, C . And, more useful for time series modeling, given any set of 
marginal distributions 1 2( , ,..., )nF F F  and any copula C ; Eq. (1) can be used to obtain 
a joint distribution with the given marginal distributions. An important feature of this 
result is that the marginal distributions do not need to be in any way similar to each 
other, nor is the choice of copula constrained by the choice of marginal distributions. 
This flexibility makes copulas a potentially useful tool for building econometric 
models. 

Since each marginal distribution, iF  contains all of the univariate information on 
the individual variable iX , while the joint distribution F  contains all univariate and 
multivariate information, it is clear that the information contained in the copula C  
must be all of the dependence information between the iX ’s. It is for this reason that 
copulas are sometimes known as ‘dependence functions’, see Galambos (1978). If the 
joint distribution function is n-times differentiable, then taking the nth cross-partial 
derivative of Eq. (1) we obtain, 
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Thus, the joint density is equal to the product of the marginal densities and the 
‘copula density’, denoted by c . This of course also implies that the joint 
log-likelihood is simply the sum of univariate log-likelihoods and the .copula 
log-likelihood., which is useful in the estimation of copula-based models: 
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The decomposition of a joint distribution into its marginal distributions and 
copula allows the researcher a great deal of flexibility in specifying a model for the 



joint distribution. This is clearly an advantage when the shape and goodness-of-fit of 
the model for the joint distribution is of primary interest. In situations where the 
researcher has accumulated knowledge about the distributions of the individual 
variables and wants to use that in constructing a joint distribution, copulas also have a 
valuable role. 

Figure B shows the scatter plots of simulated bivariate copulas: Gumbel, which 
is a special case of the Clayton–Gumbel copula that exhibits only upper tail 
dependence (left-top panel), Clayton, which is a special case of the Clayton–Gumbel 
copula that exhibits only lower tail dependence (right-top panel), Frank (left-bottom 
panel) and Student (right-bottom panel).  

 

Figure B. Simulations of Copulas Functions 
 

 
 

Fig. 3. Simulated Copulas scatter plots of simulated Gumbel, Clayton, Frank, and 
Student Copulas. All marginal are standardized normals. The parameters of the 
copulas were chosen to give a Kendall's tau equal to 0.3. 
 



In all cases, 1000 observations were generated, and margins were selected as 
standard normal. The parameters of the copulas were chosen to give a Kendall's tau 
equal to 0.3. Therefore, the simulated random variables in Fig. 3 differ only on the 
dependence structure, with the Clayton copula showing strong association in the left 
tail, while the Gumbel copula shows strong association in the right tail. It is in this 
sense that the Clayton and Gumbel copulas describe asymmetric dependence. On the 
other hand, the Student copula exhibits dependence in both tails, while no clear 
association in the tails can be observed for the Frank copula. 


