
Appendix A. Vector Autoregression and Vector Error Correction Models 

The structural approach to time series modeling uses economic theory to model the 
relationship among the variables of interest. Unfortunately, economic theory is often 
not rich enough to provide a dynamic specification that identifies all of these 
relationships (Engle and Granger, 1987). Furthermore, estimation and inference are 
complicated by the fact that endogenous variables may appear on both the left and 
right sides of equations. These problems lead to alternative, non-structural approaches 
to modeling the relationship among several variables. This section briefly describes 
the estimation and analysis of vector autoregression (VAR) and the vector error 
correction (VEC) models. We also describe tools for testing the presence of 
cointegrating relationships among several non-stationary variables.  

The vector autoregression (VAR) is commonly used for forecasting systems of 
interrelated time series and for analyzing the dynamic impact of random disturbances 
on the system of variables. The VAR approach sidesteps the need for structural 
modeling by treating every endogenous variable in the system as a function of the 
lagged values of all of the endogenous variables in the system. The vector 
autoregression (VAR) is commonly used for forecasting systems of interrelated time 
series and for analyzing the dynamic impact of random disturbances on the system of 
variables. The VAR approach sidesteps the need for structural modeling by treating 
every endogenous variable in the system as a function of the lagged values of all of 
the endogenous variables in the system. 

The mathematical representation of a VAR is: 
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where yt is a vector of endogenous variables, xt is a vector of exogenous variables, 
A1,…,Ap and B are matrices of coefficients to be estimated, and εt is a vector of 
innovations that may be contemporaneously correlated but are uncorrelated with their 
own lagged values and uncorrelated with all of the right-hand side variables. Since 
only lagged values of the endogenous variables appear on the right-hand side of the 
equations, simultaneity is not an issue and OLS yields consistent estimates. Moreover, 
even though the innovations εt may be contemporaneously correlated; OLS is 
efficient and equivalent to GLS since all equations have identical regressors.  



Multivariate simultaneous equations models are used extensively for macro- 
econometric analysis when Sims (1980) advocated VAR models as alternatives. At 
that time longer and more frequently observed financial time series called for models 
which described the dynamic structure of the variables. VAR models possess the 
following purposes, first, VAR models typically treats all variables as a priori 
endogenous, and thereby VAR models accounts for Sims’ critique that the exogeneity 
assumptions for some of the variables in simultaneous equations models are ad hoc 
and often not backed by fully developed theories. Restrictions, including exogeneity 
of some of the variables, may be imposed on VAR models based on statistical 
procedures. Further, VAR models are natural tools for forecasting. Their setup is such 
that current values of a set of variables are partly explained by past values of the 
variables involved. They can also be used for economic analysis, however, because 
they describe the joint generation mechanism of the variables involved. Structural 
VAR analysis attempts to investigate structural economic hypotheses with the help of 
VAR models. Impulse response analysis, forecast error variance decompositions, 
historical decompositions and the analysis of forecast scenarios are the tools which 
have been proposed for disentangling the relations between the variables in a VAR 
model.  

Traditionally VAR models are designed for stationary variables without time 
trends. Trending behavior can be captured by including deterministic polynomial 
terms. In the 1980s the discovery of the importance of stochastic trends in economic 
variables and the development of the concept of cointegration by Granger (1981), 
Engle and Granger (1987), Johansen (1995) and others have shown that stochastic 
trends can also be captured by VAR models. If there are trends in some of the 
variables it may be desirable to separate the long-run relations from the short-run 
dynamics of the generation process of a set of variables.  

A vector error correction (VEC) model is a restricted VAR designed for use with 
nonstationary series that are known to be cointegrated. Vector error correction (VEC) 
models offer a convenient framework for separating long-run and short-run 
components of the data generation process. You may test for cointegration using an 
estimated VAR object, Equation object estimated using nonstationary regression 
methods. The VEC has cointegration relations built into the specification so that it 
restricts the long run behavior of the endogenous variables to converge to their 
cointegrating relationships while allowing for short-run adjustment dynamics. The 
cointegration term is known as the error correction term since the deviation from 
long-run equilibrium is corrected gradually through a series of partial short-run 



adjustments. To take the simplest possible example, consider a two variable system 
with one cointegrating equation and no lagged difference terms. The cointegrating 
equation is: 
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In this simple model, the only right-hand side variable is the error correction 
term. In long run equilibrium, this term is zero. However, if y1 and y2 deviate from the 
long run equilibrium, the error correction term will be nonzero and each variable 
adjusts to partially restore the equilibrium relation. The coefficient measures the speed 
of adjustment of the ith endogenous variable towards the equilibrium. A sufficient (and 
considerably stronger) condition is that yi,t-1 and xi,t be predetermined; that is, they 
should satisfy the sequential moment restriction: 
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If we are willing to assume that εi,t is serially uncorrelated, the estimate of the 
pooled least squares is a consistent estimator for all models presented above. The 
assumption that εi,t is serially uncorrelated is, however, restrictive, especially for 
models including a smaller number of lags. We choose εi,t following a moving 
average process for the presence of serially correlated errors. Because the presence of 
moving-average errors would introduce bias in the least-squares estimator, 
estimations of the more general models proceed differently. For VAR model, the 
optimal lags of AIC is 5 lag length. We use SIC Max-lag 2 for VAR and VEC 
specification in terms of both above discussion and our data characteristic and 
frequency.  


