
Appendix A. The Concepts of Copula 

In the following, we refer Patton’s (2006b) work to illustrate the concepts of 
copula. Consider a vector random variable, 1 2[ , ,..., ]'nX X X=X , with joint distribution 
F  and marginal distributions 1 2, ,..., nF F F . Sklar’s (1959) theorem provides the 
mapping from the individual distribution functions to the joint distribution function: 

1 1 2 2( ) ( ), ( ), ..., ( ) ,    n
n nF x F x F xé ù= " Îë ûF x C x             (A1) 

From any multivariate distribution, F , we can extract the marginal distributions, iF , 
and the copula, C . And, more useful for time series modeling, given any set of 
marginal distributions 1 2( , ,..., )nF F F  and any copula C ; Eq. (1) can be used to obtain 
a joint distribution with the given marginal distributions. An important feature of this 
result is that the marginal distributions do not need to be in any way similar to each 
other, nor is the choice of copula constrained by the choice of marginal distributions. 
This flexibility makes copulas a potentially useful tool for building econometric 
models. 

Since each marginal distribution, iF  contains all of the univariate information on 
the individual variable iX , while the joint distribution F  contains all univariate and 
multivariate information, it is clear that the information contained in the copula C  
must be all of the dependence information between the iX ’s. It is for this reason that 
copulas are sometimes known as ‘dependence functions’, see Galambos (1978). If the 
joint distribution function is n-times differentiable, then taking the nth cross-partial 
derivative of Eq. (A1) we obtain, 
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Thus, the joint density is equal to the product of the marginal densities and the 
‘copula density’, denoted by c . This of course also implies that the joint 
log-likelihood is simply the sum of univariate log-likelihoods and the .copula 
log-likelihood., which is useful in the estimation of copula-based models: 
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The decomposition of a joint distribution into its marginal distributions and 
copula allows the researcher a great deal of flexibility in specifying a model for the 
joint distribution. This is clearly an advantage when the shape and goodness-of-fit of 
the model for the joint distribution is of primary interest. In situations where the 
researcher has accumulated knowledge about the distributions of the individual 
variables and wants to use that in constructing a joint distribution, copulas also have a 
valuable role. In other situations, for example when the researcher is primarily 
focused on the conditional mean and/or conditional variance of a vector of variables, 
copulas may not be the ‘right tool for the job’, and more standard vector 
autoregressive models and/or multivariate GARCH models, see Silvennoinen and 
Teräsvirta (2009), may be more appropriate. For a lively discussion of the value of 
copulas in statistical modeling of dependence, see Joe (1997) and Nelson (2006) and 
Mikosch (2006) for more details. Different copulas usually represent different 
dependence structures with the so-called association parameter, cq , which indicates 
the strength of the dependence. Some commonly used copulas in economics and 
finance include: the bivariate Gaussian copula, the student-t copula, the Gumbel 
copula, the Clayton copula, and their combinations. The Gaussian copula does not 
have tail dependence, while the t copula has symmetric tail dependence; and the 
Gumbel copula has only upper tail dependence, while the Clayton copula has lower 
tail dependence. 
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