
Proceedings of the 5th Anniversary Event of NSC-NRC Collaborative Research Program Symposium, pp. 46-57, Taipei, Taiwan, June 
24-25, 2002 

 46

Development of a MDO Methodology for 
Automotive Interior Blow Moulded Parts 

 
Francis Thibault and Patricia Debergue 

Industrial Materials Institute (IMI), Boucherville, Canada 
Mike Milliste 

Lear Corporation, Maple Plant, Concord, Ontario, Canada 
Weiming Shen 

Integrated Manufacturing Technologies Institute (IMTI), London, Canada  
Hamada H. Ghenniwa 

University of Western Ontario, London, Ontario, Canada 
Yeh-Liang Hsu and Tzu-Chi Liu 

Mechanical Engineering Department, Yuan Ze University, Taiwan 
Jyh-Cheng Yu and Tsung-Ren Hung 

Mechanical Engineering Department, National Taiwan University of Science and Technology (NTUST) 

NSC 89-2212-E155-019 and NRC 50_05K 
Project Term: 4/01/2000 – 4/01/2003 (third year) 

 
ABSTRACT 

 
The aim of this paper is to present the optimization algorithms 
and results obtained in the joint IMI-IMTI-Taiwan project for 
the development of design optimization methodologies that 
employ NRC blow moulding process simulation tools.  The 
proposed optimization strategies consist of the manipulation of 
the die gap programming points and the mould temperature in 
order to optimize the part thickness distribution and to minimize 
the part warpage by using gradient-based and soft computing 
techniques.  These strategies have been validated on simple blow 
moulded bottle part and on a complex planar shaped carpet part 
(filler panel) made by Lear Corporation.  Finally, a strategy is 
proposed to integrate simulation technologies as well as 
optimization tools developed in this project on a Web-based 
design software environment (WebBlow). 
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1.  INTRODUCTION 
 
Blow moulding is the most popular and efficient process 
for manufacturing commodity hollow plastic parts such as 
bottles, containers, toys, etc.  More recently, this forming 
process has been applied to the manufacture of complex 
automotive parts such as fuel tanks, seat backs, air ducts, 
windshield washer and cooling reservoirs.  One such 
value-added part is a planar part used in sport utility 
vehicles with carpet adhered of one of the sides (Figure 
1). The quality of these complex hollow parts is governed 
by several parameters such as: 

• Material properties, 
• Operating conditions, 

• Tooling parameters associated with the mould 
and the die design, 

• Mechanical performance of the final part. 
 
Blow moulded part designers in today’s global 
environment are under increasing pressure to reduce part 
development time to a minimum, yet ensuring the 
maximum part quality and minimum manufacturing costs.  
In almost all industrial sectors, simulation technologies 
have proven to be a powerful tool for achieving a small-
scale attainment of this goal.  The use of optimization-
based design allows the designers to treat complex design 
criteria via simulation and is expected to increase 
dramatically. 
 
The main requirements of blow moulded automotive 
components usually combine part weight, thickness 
distribution, part dimension, shape and mechanical 
performance.  These design variables can be controlled by 
manipulating the mould shape and operating conditions in 
order to minimize part weight and part deflection 
(warpage) subjected to mechanical performance. 
 
In order to address industrial concerns about design tools 
for blow moulding, an international research initiative has 
been established between two institutes of the National 
Research Council of Canada (NRC) and two Universities 
in Taiwan as listed below: 

• From NRC: the Industrial Materials Institute (IMI) 
and the Industrial Manufacturing Technology 
Institute (IMTI); 

• From Taiwan: the Yuan Ze University and the 
National Taiwan University of Science and 
Technology (NTUST). 
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The team members provide complementary expertise that 
will make the research collaboration meaningful and 
mutually beneficial (Figure 2). 
 
The goal of this project is to evaluate a multi-disciplinary 
design optimization (MDO) software environment, in 
particular different optimization approaches, for the 
design of automotive interior blow moulded parts.  The 
methodology employs NRC’s blow moulding simulation 
tools.  In order to focus our team, Lear Corporation 
(Maple plant, Ontario, Canada), one of the largest 
Canadian manufacturers of automotive blow moulded 
interior parts, has been invited to participate in the project.  
The proposed MDO software environment will integrate 
process simulation tools, performance simulation tools 
into an optimization procedure in order to minimize the 
part weight and part deflection (warpage) subjected to 
mechanical constraints in service. 
 
In this paper, we will describe the optimization 
methodologies developed based on different approaches 
such as gradient-based optimization and soft computing 
techniques.  A summary of the numerical optimization 
algorithms and results will be presented for simple case 
study (validation purpose) and on a complex planar 
shaped carpet part (Figure 1) of Lear Corporation.  
Finally, a Web-based strategy will be presented for the 
integration of the simulation technology and the 
optimization tools developed in this project. 
 
2.  PROCESS SIMULATION 
 
Before going into the core of this project, we would like 
to give a brief overview of the blow moulding process and 
the available simulation technology developed at IMI to 
model the whole process. 
  
Process Description 
The blow moulding process is a forming process, 
consisting of three phases: parison extrusion, part inflation 
and part solidification.  The extrusion phase involves the 
extrusion of a polymer melt through an annular die to 
form a hollow cylindrical parison with a non-uniform 
material distribution and consequently non-uniform 
parison thickness along its length.  Once the parison is 
extruded to the desired length, it is inflated to take the 
shape of an enclosing mould.  The part then solidifies as a 
consequence of the heat transfer to the cooling mould.  
The parison thickness distribution is modified 
significantly by the inflation and the solidification stages 
to yield the final part thickness distribution. 
 
Blow moulded parts often require a strict control of the 
thickness distribution and final weight.  A good practice 
for achieving this goal is to manipulate the die gap profile 

of the extruder.  The die gap can be adjusted as a function 
of time in order to obtain the desired thickness profile 
along the extruded parison (Figure 3).  Manipulation of 
the die gap programming points can lead to an optimal 
part thickness distribution. 
 
Process Modelling 
The blow moulding process simulation consists of the 
modelling of the successive process stages in order to 
predict the final part quality as a function of the operating 
conditions, the mould geometry and the material 
properties.  We used the commercial software (BlowSim) 
developed at NRC to model the process phases: 

• Parison formation 
• Clamping and inflation 
• Part cooling and shrinkage 
• Part mechanical performance 

 
The process modelling is based on a large displacement 
finite element formulation [1].  The parison deformation is 
modelled using a multi-layer membrane element type and 
a non-isothermal visco-elastic material model.  The 
mechanical performance is modelled with then use of 
using BlowSim or ANSYS software with the predicted 
thickness distribution, and the appropriate applied load. 
 
3.  PERFORMANCE OPTIMIZATION 
 
When designing a part, it is very important to take into 
consideration its mechanical performance in service.  A 
common practice for achieving this goal is to minimize 
the part weight subject to machine operating limits and 
part mechanical performance constraints such as top load, 
internal pressure resistance, part deflection, etc.  In this 
project, we develop a performance optimization 
methodology, based on gradient and soft computing 
techniques to find the optimal part thickness distribution 
that satisfies the mechanical constraint subjected to bound 
part thickness limits.  No more details will be given in this 
paper concerning the performance optimization 
algorithms. The interested reader is referred to the next 
references [11,12,13] for further information on this 
particular topic. 
 
4.  PROCESS OPTIMIZATION 
 
The part thickness is predicted using three consecutive 
calculation steps (Figure 4).  In the first step, a finite 
element mesh of the parison is created, while the second 
step consists in the non-linear finite element analysis of 
the forming phases.  In the third analysis step, a uniform 
shrinkage factor is applied in the thickness direction.  The 
local parison thickness is included as a mesh property Ta,k.  
Consequently, the part thickness distribution can be 
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expressed by the product of three separated transfer 
functions as follows (5): 

)( ,, jbsip TFT =
 (12) 

)( ,, kabjb TFT =
 (13) 

)(, laka FT Θ=
 (14) 

where Θ l is the vector of the programming points and 
vectors Ta,k, Tb,j and Tp,i are the thickness distributions of 
the finite elements before (parison thickness), after 
forming (inflated parison thickness) and after shrinkage 
(part thickness). 
 
The main objective of this process optimization is to 
manipulate the die gap programming (Figure 3) (die gap 
opening versus time) in order to target a uniform part 
thickness distribution or a non-uniform part thickness 
distribution obtained from the performance optimization.  
Sometime, the die geometry has to be manipulated as well 
to achieve this goal.  However, for the sack of clarity, this 
issue will not be treated herein. 
 
4.1 GRADIENT-BASED ALGORITHM 
 
The commercial process optimization methodology 
(BlowOp), previously developed at NRC, uses a 
sequential linear gradient-based algorithm to determine 
the optimal die gap opening profile of the extruder that 
minimizes the variance of the part thickness distribution 
from a set point.  The approach is evaluated on two 
applications in this work.   Simulations of the consecutive 
process phases are used to predict the final part thickness 
distribution Tp,i from a given set of operating conditions.   
 
The proposed gradient-based algorithm for minimizing 
the part thickness variance around the target part thickness 
(Ttarget) uses an updated gap opening Θ l

 q+1 given by the 
following equation: 
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q are the gradient matrices 
obtained from Equations 12-14 and α is the user-defined 
gain of the system.  An appropriate choice for the gain has 
a major influence in the system convergence because of 
the strongly non-linear nature of such forming processes. 
 
The gradients of the transfer function for the shrinkage 
analysis is given by: 
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where ST is the thickness shrinkage factor. 
 

The transfer function Fb is difficult to determine since it 
results from a non-linear finite element analysis.  In order 
to propose an explicit expression for its gradient matrix 
∇Fb, the final thickness of each finite element is assumed 
to be only dependent on its initial thickness.  This 
assumption neglects the coupled deformation pattern 
dependence on the initial parison thickness profile.  
Consequently, even though it provides a simple solution 
for an optimization algorithm, its use requires special care.  
The deformation gradient associated with the finite 
element analysis can then be expressed by: 
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4.2 SOFT COMPUTING TECHNIQUES 
 

4.2.1 FUZZY LOGIC 
Gradient-based numerical optimization algorithms 

treat the optimization problem as pure mathematical 
problems.  Valuable engineering knowledge is not utilized 
in the optimization process.  Moreover, in engineering 
optimization problems, it is hard to make an exact 
mathematical optimization model.  The idea of the fuzzy 
optimization algorithm is that, instead of using purely 
numerical information to get the new design point in the 
next iteration, engineering knowledge and human 
supervision process can be modeled in the optimization 
algorithm using fuzzy rules. 
 
Figure 5 shows the fuzzy optimization process.  The 
inputs to the fuzzy optimization engine are, Yq (the vector 
of system target output at the q-th iteration), yq (the vector 
of system process output at the q-th iteration), and ∆yq = 
yq - yq-1.  Analogous to a standard line-search algorithm, 
the output of the fuzzy logic optimization engine is ∆xq = 
αq · sq, in which equation sq is the search direction in the 
design space and αq  is the distance that we wish to move 
in direction sq. Then we can get the values of the design 
variable values for the next iteration xq+1=xq+∆xq, and 
feed in the plant to complete the closed loop. 
 
In the optimization process, the objective is to minimize 
the standard deviation between the system process output 
y and the system target output Y as expressed by 
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where n is the total number of components in system 
output y, and i is the number of system output. 
 
In Figure 5, the task of the fuzzy logic optimization 
engine is to generate the search direction qs  and step 
length qα  using fuzzy rules.  A fuzzy system is 
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characterized by a collection of linguistic statements 
based on expert knowledge.  The linguistic statements are 
usually in the form of IF-THEN rules.  For example, in 
the blow molding process optimization, we describe the 
engineering heuristics as follows: 
(1) If the thickness of a certain node is lager than the 

target thickness, then reduce the respective opening 
rate. 

(2) If the thickness of a certain node is smaller than the 
target thickness, then increase the respective opening 
rate. 

 
These engineering heuristics indicate that the thickness of 
a certain node is a monotonic increasing function with 
respect to the corresponding gap opening rate.  We can 
make our fuzzy rules according these engineering 
heuristics: 

IF thickness is PB THEN gap opening is NB, 
IF thickness is PS THEN gap opening is NS, 
IF thickness is ZE THEN gap opening is ZE, 
IF thickness is NS THEN gap opening is PS, 
IF thickness is NB THEN gap opening is PB. 
 

Quantization table is a key for the fuzzy optimization 
engine. Table 1 is the quantization table for the 5 rules 
described above. 
 

Table 1.   Quantized Variables. 
Boundaries of fuzzy input, iy  Quantized Level 

( )iii YyY −+ max,  2 

( )[ ] isiii QYyY −+ max,  1 

iY  0 
( )[ ] isiii QyYY min,−−  -1 

( )min,iii yYY −−  -2 

Boundaries of fuzzy reasoning, ix∆  Quantized Level

( ) ojj fxx ⋅−max.  2 

( )[ ] osojj Qfxx ⋅−max.  1 

0 0 
( )[ ] osjj Qfxx ⋅− min,  -1 

( ) ojj fxx ⋅− min,  -2 

iY : target value of system (target thickness in the blow 
moulding example), 

max,iy : maximum initial value of system output iy  (maximum 

thickness in the initial design), 
min,iy : minimum initial value of system output iy  (minimum 

thickness in the initial design), 
max,jx : maximum initial value of system input jx  (maximum 

gap opening), 

min,jx : minimum initial value of system input jx  (minimum 

gap opening), 
isQ : quantization input scale that define the linearity of 

quantized level with respect to the fuzzy input, 
osQ : quantization output scale that define the linearity of 

quantized level with respect to the fuzzy output, 
of : fuzzy reasoning value that defines the maximum distance 

we wish to move in one iteration. 
 

4.2.2 Fuzzy Neural-Taguchi with Genetic 
Algorithm (FUNTGA) 

Taguchi’s method has proven its efficiency and 
simplicity in parameter design.  The proposed 
optimization strategy, FUzzy Neural-Taguchi with 
Genetic Algorithm (FUNTGA), applies Taguchi’s 
experimental design to the training and testing of a neural 
network model [9].  The trained network becomes the 
function generator of the design fitness in the Genetic 
Algorithm (GA). The optimum search using GA enhances 
the possibility for a better design than the conventional 
analysis of means (ANOM).  A fuzzy inference of 
engineering knowledge is introduced to enhance the 
searching efficiency of GA.  The flowchart of the 
optimization strategy is illustrated in Figure 6. 
 
Taguchi’s Method 
Inspired from statistical factorial experiments, Taguchi’s 
method features orthogonal arrays and analysis of mean 
(ANOM) to analyze the effects of design variables [9].  
The application of orthogonal arrays reduces the number 
of experiments, which is particular effective for design 
optimization involving expensive experiments or time-
consuming simulations. ANOM study of experiment 
results reveals the effects of design parameters that are 
used to determine the optimal level of each parameter. 
However, the prediction of the optimal design is sensitive 
to the selection of factorial levels and interaction effects.  
Also, the restriction of parameter values to factorial levels 
reduces the possibility of having better designs between 
preset levels. 

Neural-Taguchi Network (NTN) 
Our neural network uses a back-propagation network 
(BPN) that consists of an input layer, a hidden layer and 
an output layer. Sampling data are divided into learning 
and testing samples.  Learning samples are used to 
determine the weighting matrices among neurons and 
testing samples to determine the accuracy and the 
generality of the network. 

Training samples are essential to the prediction quality of 
network models.  This study employs Taguchi’s 
experimental design to select training samples to reduce 
the number of experiments and to maintain a good sample 
representation [10].  The verification experiment of the 
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optimal design from the ANOM study will serve as a 
testing sample. Significant interactions often introduce 
complexity to experimental design and lead to erroneous 
prediction of optimal factorial levels using ANOM.  The 
network model can resolve interaction effects among 
variables.  These features enable the network to explore a 
better design as compared with Taguchi’s additive model. 

Optimum Search of the Neural-Taguchi Network 
Using GA 
The trained Neural-Taguchi network predicts responses 
for the parameter combinations in the investigating range.  
Generic Algorithm is thus applied to search for the 
optimum.  If the verification result of the predicted 
optimum is not satisfactory, the design will be used as an 
initial design and another set of orthogonal array 
experiments will be conducted.  The results will be served 
as additional testing data for the network.  The iteration 
process stops when the predicted optimum obtained from 
GA and the network converges. 

The Neural-Taguchi network replaces Taguchi’s additive 
model to predict design outputs.  The search for the 
optimum in the investigating range using GA will explore 
the possibility of better designs other than factorial points. 
However, the application of orthogonal arrays 
significantly reduces the number of training samples as 
compared with conventional random sampling. Owing to 
that better prediction accuracy will exist around sampling 
points, our approach introduces a fuzzy inference to steer 
the search direction of GA. 

The Reliability Distance 
To facilitate the calculation of the distance among designs, 
the values of the set points of continuous variable xk are 
normalized to zk where zk =-1 and zk =1 represent the 
maximum and the minimum values of the factorial 
variable xk. 

The factorial distances between predictive designs, Di, 
and the sample data Sj are defined as follows 
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where n represents the number of variables. 

Since predictions around the sampling points of the 
trained network will have higher accuracy, we proposed 
to use the Reliability Distance (RD) of a predictive design 
as the minimum factorial distance between the prediction 
and sampling data. 

Smaller RD results in higher prediction accuracy.  Also, 
the distance of an interpolating design is assumed 
negative and the distance of an extrapolating design is 
assumed positive.  For instance, the Reliability Distance 

of D1 in Figure 7 is negative and the Reliability Distance 
of D2 is positive. 

The Fuzzy Rules of Prediction Accuracy 
The Reliability Distance of a predictive design determines 
the prediction accuracy of the design.  The reliability of 
the predicted design decreases when the absolute value of 
RD increases. Also, the reliability of extrapolating designs 
is often much worse than the interpolating designs. Based 
on the above characteristics of neural network, we 
propose to use fuzzy rules of the design reliability as 
follows 

R1: If RD is PB then prediction reliability is Bad. 
R2: If RD is PM then prediction reliability is Poor. 
R3: If RD is PS then prediction reliability is Fair. 
R4: If RD is ZE then prediction reliability is Excellent. 
R5: If RD is NS then prediction reliability is Excellent. 
R6: If RD is NM then prediction reliability is Good. 
R7: If RD is NB then prediction reliability is Fair. 

Seven levels are defined to describe the condition 
variables: PB(Positive Big), PM(Positive Medium), 
PS(Positive Small), ZE(Zero), NS(Negative Small), 
Negative Medium (NM), and NB(Negative Big).  Five 
levels are defined to describe the assessment results: 
Excellent, Good, Fair, Poor, and Bad.  Standard 
membership functions associated with these statements 
are illustrated in Figures 8 and 9. 

4.3 SIMPLE CASE STUDY USING SOFT 
COMPUTING TECHNIQUES: BOTTLE 
 
Fuzzy Logic Method 
The fuzzy optimization algorithm is applied to the blow 
moulding of a simple bottle to evaluate its applicability.  
The design objective is to target a 2 mm final average part 
thickness.  As shown in Figure 10, the fuzzy optimization 
algorithm terminates within 0.1% after 14 iterations.  The 
objective function (part thickness standard deviation) 
decreases from 1.01 to 0.41, which means that the part 
thickness distribution has a better uniformity. One can 
notice that only 22 simulations are required.  Figure 11 
shows the initial gap opening, which is set at 75% at all 
time, and the optimized gap opening.  Figure 12 
compares the thickness distribution of the initial design 
and optimal design.  For the optimal design, an average 
part thickness of 1.85 mm has been obtained, which is 
close to the thickness target. 
 
FUNTGA Method 
The FUNTGA optimization strategy is applied to the 
parison programming of the extrusion blow moulded 
bottle with a uniform wall thickness.  The commercial 
simulation technology developed at NRC (BlowSim) has 
been used to predict the wall thickness distribution of 
blow moulded parts. 
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A quality blow moulding part requires on-target and 
uniformly distributed wall thickness. The proposed 
objective function is defined as the average quality loss 
due to the deviation of thickness 

( )
221

2

)(_ sTt
n

Tt
lossAvg

n

i

i

+−≈
−

=
∑

=  
(21)

where ti  stands for the thickness of node i; T stands for the 
target thickness; n stands for the number of nodes of the 
simulation model, t  is the mean thickness, and s2 is the 
sampling variance. 

Any deviation from the target thickness will cause quality 
loss. The average quality loss can be divided into two 
parts: the deviation of the mean from the target thickness 
and the variation of the thickness around mean. The 
design optimization seeks to minimize the variation of 
thickness and the difference between the target and the 
mean thickness. 
 
Establishment of the Neural-Taguchi Network 
The L18 orthogonal experiments are used as the training 
samples for the BPN of the extrusion blow moulding.  
This study assumes a constant cross section area of the 
parison and the final part, which provides the initial 
design of die opening (Table 2).  The ranges are 
tentatively set to be 30% for the middle and 10% for both 
ends of the programming points.  The initial design and 
Taguchi’s optimum design are used as testing samples.   
 
Optimum Search using GA 
The fitness function is defined as the negation of the 
average loss of Eq. [21].  The trained network will then be 
used as the function generator for each chromosome 
combination.  The fuzzy rules for prediction accuracy are 
applied to GA to improve the searching efficiency. The 
optimum chromosome is presented in Table 2. 

Table 2. FUNTGA’s optimum. 

 P(t0) P(t1) P(t2) P(t3) P(t4) P(t5) P(t6) 
Objectiv
e 

Initial 
Design 0 60 60 60 48 5 0 0.52 

FUNTGA’s 
Optimum 0 74 67.6 70.1 74.2 0 0 0.36 

 
Table 3 compares the thickness distributions of the 
optimum obtained from BlowOp, Taguchi’s method, and 
the Fuzzy Neural-Taguchi strategy.  Taguchi’s optimum 
provides a design with the mean thickness to target but a 
larger thickness deviation.  BlowOp is quite effective and 
converges in 12 iterations.  BlowOp’s result has a much 
smaller objective function value than Taguchi’s optimum. 

However, FUNTGA outperforms BlowOp at the cost of 
more simulations.  Although FUNTGA used a total of 21 
design simulations to locate the optimum, the optimum 
exhibits a mean thickness closer to the target and a smaller 
deviation than the BlowOp’s results.  Figure 13 presents 
the variations of thickness distributions using BlowSim 
that appears that FUNTGA’s optimum has a more 
uniform thickness distribution. 

Table 3.  Comparison of the analysis results. 
 

Mean 
Thickness 

Std.Dev. 
Thickness

Initial 1.66 0.40 
Taguchi’s 2.01 0.49 
BlowOp’s 1.93 0.38 

FUNTGA’s 1.94 0.35 
 
4.4 CASE STUDY USING GRADIENT-BASED 
TECHNIQUE: PLANAR CARPET PART 
 
Before performing this process optimization, a series of 
experiments have been conducted at the Lear plant for 
validating the simulation technology for a complex part 
having a carpet on one of the sides.  Several parts have 
been manufactured and cut to measure their part thickness 
distribution.  These experimental results were compared 
with predicted values [2].  Good agreement has been 
obtained between experimental data and part thickness 
predictions.  For a set of operating conditions, the 
simulation technology has proven to be an excellent tool 
for predicting the thickness of very complex shaped parts. 
 
For this case study, only the gradient-based algorithm will 
be evaluated for minimizing part thickness variance by 
manipulating the die gap programming.  The part 
thickness target has been set at 2 mm.  The optimization 
results are illustrated on Figures 14 & 15.  The part 
thickness distribution with the current programming 
profile is not uniform.  The lower part has a smaller part 
thickness distribution when compared to the upper part.  
The statistical comparison between the actual and optimal 
die gap programming is indicated the following: 
- Actual die gap programming:  Avg=1.6 mm, σ=0.21 mm, 
- Optimal die gap programming:  Avg=1.99 mm, σ=0.17 
mm. 
 
With the proposed optimization methodology, we obtain 
an average part thickness closer to the target value and a 
better part thickness uniformity (lower part thickness 
standard deviation).  This illustrates the ability of the 
optimization algorithm to get optimal operating conditions. 
 
5.  WARPAGE OPTIMIZATION 
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Warpage is a part distortion where the surfaces of the 
moulded part do not follow the intended shape of the 
design. Part warpage results from the relaxation of 
moulded-in residual stresses, which, in turn, is caused by 
differential shrinkage of material. If the shrinkage 
throughout the part is uniform, the moulding will not 
deform or warp, it simply becomes smaller. However, 
achieving low and uniform shrinkage is a complicated 
task due to the presence and interaction of many factors 
such as molecular orientations, mould cooling, part and 
mould designs, and process conditions. 
 
The warpage problem is amplified with the presence of a 
part having a carpet on one of the sides (Figure 1).  This 
carpet acts as an insulating material and yields a non-
uniform part cooling.  As a result, the part will warp 
significantly during the solidification (Figure 16).  This is 
one of the major problems encountered by Lear 
Corporation Company and they refer to this phenomenon 
as the “banana effect”. 
 
To compensate for the non-uniform heat transfer 
coefficient on both sides of the part when cooling into the 
mould, the designer manipulates the mould temperatures.  
This is a typical optimization problem since one has to 
minimize the warpage phenomenon by manipulating the 
mould half temperatures as design variables. 
 
Before addressing the minimization problem, one has to 
estimate the heat transfer coefficient on the carpet part 
side in order to predict correctly the heat transfer between 
the mould and the part (Figure 17).  To obtain this overall 
heat transfer coefficient, a series of experiments were 
conducted at Lear Corporation to study the influence of 
several process parameters on the warpage 
characterization such as the cooling time, the mould 
temperature on the polymer side and the mould 
temperature on the carpet side [3]. 
 
By using the NRC warpage simulation technology [4,5], 
we manipulated the heat transfer coefficient on the carpet 
side to match, for a particular experiment, the same level 
of experimental warpage.  The overall heat transfer 
coefficient estimated is 606 W/m2-°C. 
  
We will now describe the optimization methodology for 
manipulating mould temperatures that minimize the part 
warpage.  At this point, only a gradient-based 
optimization algorithm is evaluated.  More details 
concerning the use of soft computing techniques to 
perform this optimization will be given at NRC-NSC 
Workshop on Advanced Manufacturing in London, 
Ontario, on Sept. 23-25, 2002. 
 
5.1 GRADIENT-BASED METHOD 

 
The second optimization solves for the minimization of 
the part deflection by manipulation of the two mould 
temperature settings, Tm1 (carpet side) and Tm2 (polymer 
side), assuming a constant cooling time. The objective 
function is expressed as the following 
 
Minimize F = Max |Part Deflection|   (22) 
subjected to 
Tm1,min < Tm1 < Tm1,max (mould temperature limits) 
Tm2,min < Tm2 < Tm2,max 
Tcooling = 86 sec  (fix cooling time) 
 
This problem is an unconstrained minimization problem.  
To perform this optimization, we employed optimization 
tools (DOT) from VanderPlaats [6].  DOT evaluates the 
mould temperature gradients (

1mTF∇ ,
2mTF∇ ) with a finite 

difference method.  For each perturbation, the part 
deflection is evaluated from the model prediction and 
consequently the gradients are estimated in order to find 
an appropriate search direction as the following 
 

q
m

q
m

q
m iii

TTT ∆+=+1     (23) 

 
where mT represents the mould temperature, i stands for 
the mould 1 and 2 and q for the optimization iteration. 
 
This optimization method has been tested on the planar 
shape carpet part of Lear Corporation (Figure 1). 
 
5.2 CASE STUDY: PLANAR CARPET PART 
 
To perform the optimization, we started with the 
following initial design for the mould temperature 
(Tm1=25°C, Tm2=25°C).  The mould temperature limits are 
defined as follows (10°C<Tm1<50°C, 10°C<Tm2<100°C).  
The results are shown in Figure 18.  One can notice that 
after the first optimization iteration, the part deflection has 
decreased by a significant amount.  At the end of the 
optimization process, the optimal mould temperatures 
obtained are Tm1=11.7°C and Tm2=54.1°C and the part 
deflection predicted is around 9 mm.  This part deflection 
value is considered very small when compared to the part 
length (2 m).  The optimal mould temperature values are 
close to the actual operating conditions of Lear, that is 
Tm1=14.5°C and Tm2=56.4°C.  However, by using these 
actual operating conditions, Lear has observed some 
minor warpage problems (part deflection = 15 mm). 
 
For this second optimization, the initial mould 
temperatures are (Tm1=50°C, Tm2=50°C).  The same 
mould temperature limits are used for this optimization.  
The results are presented in Figure 19.  The optimal 
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mould temperatures obtained are Tm1=23.8°C and 
Tm2=67.1°C and the maximum part deflection predicted is  
20 mm.  As we can see, the optimal values obtained for 
the mould temperatures differ from the first optimization 
but the maximum part deflection changes slightly.  The 
warpage prediction is not function of the absolute values 
of mould temperatures but rather of the differential mould 
temperature: 
- First optimization : ∆Tm=54.1°C-11.7°C = 42.4°C- 
Second optimization : ∆Tm=67.1°C-23.8°C = 43.3°C- 
Operating conditions of Lear: ∆Tm=56.4°C-14.5°C = 41.9°C 
 
To minimize the warpage phenomenon, the differential 
mould temperature should be approximately 43°C.  To 
avoid having multiple designs (solutions), a process 
constraint should be included into the optimization 
formulation problem, such as the average part temperature 
when the part is taking out of the mould should be lower 
that a prescribed value or lower that the heat deflection 
temperature (HDT). 
 
6. DEVELOPMENT OF WEB-BASED DESIGN 
SOFTWARE 
 
One of the primary objectives of this project is to build a 
distributed multidisciplinary design optimization (MDO) 
software environment (called WebBlow) for the design of 
blow moulded parts. The proposed methodology includes 
distributed system integration using intelligent agents and 
Internet/Web technologies. Web technology is becoming 
more and more popular to implement collaborative 
product design environments. Web-based approaches for 
the implementation of a blow moulded parts design 
system have several advantages: 
- Software does not need to be installed on the client 

site, which in turn reduces design costs for user 
companies (particularly SMEs) by eliminating both 
software/hardware purchase and installation costs. 

- Software upgrades need to be done only on the server 
site, which will save time and money for both the 
software supplier and user companies. 

- Software suppliers will be able to protect their 
software from illegal duplications and distributions. 

 
Although Web technology plays an important role in 
promoting and supporting sharing of information and 
design, it is not flexible enough for legacy systems 
integration as well as computing resource management. 
We propose an agent-oriented approach for Web-based 
collaborative design systems [7]. The proposed approach 
has a number of advantages:  
- It provides greater flexibility for legacy 

systems integration through socket-based 
communication among local resource agents behind a 
Web server. 

- It can enable real-time collaboration through 
communication among active Web servers which are 
implemented as autonomous intelligent agents 
communicating with each other actively. Such an 
implementation also provides a way to integrate 
various legacy systems separated by firewalls.  

- It can improve the performance of 
development and design process, particularly in the 
cases of multiple projects and multiple users working 
at the same time. 

 
WebBlow system is composed of agents, Applets, 
Servlets and XML databases. Each of them has own 
responsibilities and they work together collaboratively. 
The agents are separated into two groups from physical 
location perspective. Some agents are located only within 
the optimization service provider organization site, and 
others may be anywhere in the world as long as the 
Internet access is available. The communication between 
agents over a firewall is through Applet/Servlet 
communication using HTTP protocol. On the other hand, 
the communication between agents within the firewall is 
through socket communication. The Graphic User 
Interface of WebBlow system is made up of 6 interfaces. 
Figure 20 shows one example of the Web based user 
interfaces. More details of WebBlow will be presented at 
the NRC-NSC Workshop on Advanced Manufacturing in 
London, Ontario, on Sept. 23-25, 2002. 
 
7.  CONCLUSIONS 
 
In this project, gradient-based and soft computing 
techniques have been presented to perform process 
optimization by manipulating the die gap programming 
points and mould’s temperature in order to optimize the 
part thickness distribution and to minimize the part 
warpage.  The optimization tools performed well for the 
cases studied.  Finally, the third year will be dedicated to 
validate these tools on industrial cases and to complete the 
integration of the simulation technology and the 
optimization tools on a Web-based software design 
environment. 
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Figure 1. Automotive filler-panel blow moulded part. 
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Figure 2. Description of research team expertise 
collaborating in the MDO project. 
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Figure 3.  Description of parison programming. 
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Figure 4.  Prediction of part thickness through three 
consecutive steps: a) parison formation (θ = die gap 

programming), b) parison inflation and c) part shrinkage. 
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Figure 5.  Structure of fuzzy optimization. 
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Figure 6.  The Optimization flowchart of FUNTGA. 
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Figure 7.  The factorial distances of predicted designs. 

 

PS PM PBNB NM NS

Interpolation Extrapolation
0.250  0.750 1.250-1.250 -0.750 -0.250

ZE

1.0

RD

 
Figure 8. Membership functions of condition variables. 
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Figure 9.  Membership functions of assessment variables. 

 

 
Figure 10.  Iteration history of the fuzzy optimization 
algorithm on the bottle case. 
 

 
Figure 11. Comparison between optimized and initial 
programming profiles. 
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Figure 12. Comparison between optimized and initial 

thickness distribution. 
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Figure 13. Comparison of thickness distribution. 
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 Figure 14. Comparison between optimized and current 
programming profiles 
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Figure 15.  Part thickness distribution of the filler panel 

for a) the actual design and b) the optimal design. 
 
 

 
 

Figure 16. Example of part shape caused by a non-
uniform cooling (warpage). This phenomenon is called 
banana effect at Lear Corporation. 
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Figure 17. Illustration of the heat transfer coefficient 
between the part and the mould.  Ucarpet represents the 
overall heat transfer coefficient between the mould and 
the part on the carpet side. 
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Figure 18.  Evolution of mould temperatures and part 
deflection versus the optimization iteration (initial design: 
Tm1=25°C, Tm2=25°C). 
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Figure 19.  Evolution of mould temperatures and part 
deflection versus the optimization iteration (initial design: 
Tm1=50°C, Tm2=50°C). 
 
 

 
Figure 20. Sixth page of the Graphic User Interface. 

 
 


