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ABSTRACT: Industries often adopt a two-stage design for 
blow molded parts. The part thickness distribution is first 
determined by structure analysis to satisfy loading 
requirements followed by a programming of die gap 
opening to realize the thickness distribution. This study 
proposes a soft computing based optimization scheme 
integrating part design and molding process control to 
search for the die gap programming of the molding process 
with a minimum part weight while satisfying performance 
constraints. Finite element analysis tools are applied to 
simulate the extrusion blow molding process and structure 
analysis. To reduce the number of simulation, the proposed 
scheme first establishes a neural network (NN) model from 
a small experimental design to simulate the system response, 
and searches for the model optimum using genetic 
algorithm (GA). Since the prediction generality of a NN 

from small training samples will be limited, this work 
proposes a fuzzy reasoning for the prediction reliability of 
the model to guide the GA search for a quasi-optimum. The 
verification of the optimum is added to retrain the model, 
and the process iterates until the reach of convergence. The 
iteration automatically distributes additional samples in the 
most probable space of the design optimum for the evolving 
model, and improves the sampling efficiency. A HDPE 
bottle design is presented to illustrate the application, and 
to compare with Taguchi method and a simple iteration of 
NN and GA. The proposed scheme outperforms the other 
two and provides a feasible optimum from a robust 
convergence.  Wiley Periodicals, Inc. J Appl Polym Sci ,2010  
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1. INTRODUCTION 

*Typical extrusion blow molding parts involves two 
design phases. The part thickness distribution is first 
determined by structure analysis to satisfy the loading 
requirements followed by the control of extrusion 
molding process to realize the thickness distribution. 
Recent advances in numerical tools have proven their 
advantages in the applications of structure analysis 
and process simulation. Design verification using the 
simulation tools requires lower cost and shorter time 
than conventional trial-and-error experiments. 
Performance optimization of blow molding parts then 
becomes feasible to search for a design with minimum 
part weight while satisfying the mechanical 
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constraints. However, due to the complexity of 
numerical simulation, a streamlined design procedure 
with high searching efficient is still important. 

The extrusion blow molding involves four 
processes: parison extrusion, mold clamping, parison 
inflation, and part solidification.  First, the parison 
extrusion produces a molten thermoplastic tube 
coming out from the die.  The parison shape is 
determined by the die geometry, die gap 
programming, and flow rate. The parison is then 
clamped and high-pressure air is blown into it to 
obtain the final part. Finite element tools, such as 
BlowSim developed by National Research Council of 
Canada, provide an integrated simulation for parison 
extrusion and blow molding processes to obtain the 
final thickness distribution of the inflated part [1][2]. 

By manipulating the die gap opening over time, 
the parison profile can be controlled. Clearly, there is 
a direct relationship between the parison thickness 
and the inflated part thickness. The parison thickness 
profile is critical since it determine the part 
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performance such as load resistance and part weight. 
The main goal of the parison programming is to 
control the die gap openings to obtain the desired 
thickness distribution of final parts [3]. The 
programming points are then used to specify the die 
gap openings of the parison in the extruder as a 
function of time.  For the bottle example in Fig. 1, the 
die gap openings at 7 discrete extrusion times: P(t0), 
P(t1), P(t2), P(t3), P(t4), P(t5), and P(t6) are identified as 
the design variables. 

 

P(t0)

P(t1)

P(t2)

P(t4)

P(t3)

P(t5)

P(t6)

 

Fig. 1 Exemplar programming points of the parison 
extrusion of bottles. 

  

Higher material efficiency will lead to a lighter 
part. A uniform wall thickness design for the final 
inflated part may lead to over-design for unloaded 
sections and under-design for critical loading areas if 
the parts are subject to mechanical loads such as 
impact and internal pressurization. Uniform thickness 
distribution will not guarantee an optimum 
performance. An optimum part thickness profile has 
to satisfy the requirement of mechanical strength with 
minimum part weight. Consequently, the problem 
can be converted to the determination of the die gap 
opening profile of the extruder such that the weight of 
the final blown part is minimized subject to the 
constraint that the Von Mises stresses of the part 
under test loads should not exceed the material yield 
stress [4]. 

Often the optimization process is conducted in 
two stages [5]. The performance optimization uses a 
gradient-based technique to determine the minimum 
part thickness distribution that satisfies the stress 
constraint following by the process optimization 
phase to determine the optimal die gap opening 
profile that minimizes the part weight subjected to the 
minimum thickness constraint derived from the 
performance optimization [6][7]. The minimum 
thickness constraint of each controlling point was 
determined by retaining the maximum thickness from 
individual test load. However, the stress of each 
element is not only a function of the local thickness. A 

part satisfying the minimum thickness constraint may 
not guarantee the satisfaction of the stress constraint. 

Many literatures address the optimization of 
parison programming to achieve the required 
thickness distribution of blown parts. The searching 
efficiency becomes an important issue for time 
consuming simulations and expensive experiments 
such as blow molding. Taguchi method [8] is well 
known for its efficiency and simplicity in parameter 
design. Inspired from statistical factorial experiments, 
Taguchi method features orthogonal arrays and 
analysis of mean (ANOM) to analyze the effects of 
design variables.  Each variable is assumed to have 
finite levels (set points), such as two or three levels, 
within the investigating range.  The orthogonal array 
is a type of fractional factorial experiments.  The 
application of orthogonal arrays reduces the number 
of experiments, which is particular effective for design 
optimization involving expensive experiments.  
ANOM study of experiment results reveals the effects 
of design parameters that are used to determine the 
optimal level of each parameter [9]. However, the 
prediction of the optimal design is sensitive to the 
selection of factorial levels and interaction effects. 
Also, the restriction of parameter values to factorial 
levels reduces the possibility of having better designs 
between preset levels.  

Genetic Algorithm (GA) applies the evolution 
principles found in nature to the problem of finding 
an optimal solution [10]~[12], and is popular in 
solving complex engineering problems. GA uses a 
selection operator to avoid trapping at a local 
optimum that often happens in classical optimizations, 
when a better optimum may be found outside the 
vicinity of the current solution. A lot of modifications 
of the methodology have been proposed since the 
concept had been first raised in 1975. Among them, 
competent GA [13] claims to find a global, or near 
global, solution in reasonable time. Banier and Brisset 
[14] introduce a GA mixed with Constraint 
Satisfaction Problem (CSP) techniques. The approach 
is designed for combinatorial problems whose search 
spaces are too large and/or objective functions too 
complex for usual CSP techniques and whose 
constraints are too complex for conventional genetic 
algorithm. The main idea is the handling of 
sub-domains of the CSP variables by genetic 
algorithm. By combining the achievements of genetic 
and evolutionary computation with the advanced 
methods of machine learning and probabilistic 
modeling, the Bayesian optimization algorithm is 
capable of solving problems decomposable into 
sub-problems of bounded order quickly, accurately, 
and reliably [15]. 

The integration of trained network models and a 
searching algorithm becomes attractive for 
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engineering optimization. The numerical network 
model replaces the exact engineering system during 
the optimum search to reduce experiment costs [16]. 
There are two types of integration in terms of the 
modeling strategy. One aims to establish a simulating 
model with accurate generality for the engineering 
system at the first place. A searching algorithm is 
applied to search for the optimum in the simulated 
model instead of interacting with actual engineering 
system [17][18]. However, a great number of training 
samples is often required to establish an accurate 
simulating model which is not cost realistic in 
engineering applications. Also, the training accuracy 
varies with the complexity of the problems, and no 
universal strategy guarantees prediction generality. 
Some others start from a network model from smaller 
training samples. Though modeling imperfection is 
expectable, additional training samples apply only to 
the space of interest to reduce sampling cost. Here, the 
searched optimum from the imperfect model serves as 
additional training samples [19][20]. Therefore, the 
training and searching processes iterate to improve 
the network modeling gradually especially in the 
probable space of design optimum. 

Sampling efficiency is important for the network 
modeling of the applications with a high sampling 
cost. The selection of well designed experiments such 
as Taguchi’s orthogonal arrays as training samples 
could balance sampling cost and prediction accuracy. 
Some literatures applied Taguchi’s orthogonal arrays 
as training samples for a neural network model and 
searched for the optimum using GA [21]~[23]. 
Although the use of orthogonal arrays as training 
samples reduces the sampling cost, limited learning 
samples may greatly diminish prediction generality of 
the trained network model for complex systems like 
extrusion blow molding. A lower sampling cost is 
traded for a lower prediction generality. Previous 
study often overlooks the possibility of the lack of 
prediction generality for a network model from 
deficient training samples and a unbounded search 
for the optimum in the feasible domain of a network 
model might lead to erroneous results. Even the 
confirmation result of the search optimum is used to 
retrain the network model, the iteration often take a 
long time to converge. Reliable prediction of such 
network model from deficient samples is likely 
restricted to the neighboring space of training samples. 
A guided search in an evolving network model would 
increase searching reliability and sampling efficiency. 

This study proposes a novel optimization scheme 
integrating the part design and the molding process 
control. The soft computing based optimization 
scheme searches for the die programming of the 
molding process of minimum part weight while 
satisfying the performance constraints. The design 

objective is to search for a feasible stress distribution 
with a minimum deviation to the material allowable 
stress from manipulating the die gap opening at 
designate programming points. To balance the 
simulation cost and the prediction accuracy, the study 
applies an evolving modeling and optimization 
strategy to increase the sampling efficiency. Two finite 
element programs, BlowSim and ANSYS, are 
introduced to simulate the thickness distribution of 
the extrusion blow molding processes and to perform 
the structural analysis under test loads. A bottle 
design is presented to illustrate the proposed method. 

2. OPTIMIZATION STRATEGY 

The proposed optimization strategy, Prediction 
Reliability Guided Search of Evolving Network 
Modeling (PREGSEN), first establishes a neural 
network from a small experimental design, and 
searches for the optimum of the trained model using 
genetic algorithm. To cope with possible deficiency of 
prediction generality due to small learning samples, 
the strategy introduces the fuzzy prediction reliability 
to direct the evolution decision in genetic algorithm 
and increase the evolving priority surrounding 
training samples. The verification experiment of the 
derived optimum from GA search is then introduced 
to the learning samples to retrain and evolve the 
network model. Therefore, only one additional 
interaction with the actual engineering system is 
required in each iteration. The training and searching 
processes iterate until the convergence of optimum. 
The flowchart of the proposed optimization strategy 
is illustrated in Fig. 2 

2.1. Evolving Neural Network Model 

Neural network technologies are effective in 
establishing a simulation model from sampling data 
for engineering systems. Back propagation network 
(BPN) is a type of supervised learning networks and 
the most widely used network model [24]. Previous 
researches [2][16] have proposed a prediction model 
for extrusion blow molding applications using BPN 
from extensive experimental data. However, this 
study applies BPN to establish a “rough” network 
model from a small number of training samples only 
for the purpose of optimum search. Often, the 
prediction accuracy of the network model will be 
closely related to the number of training samples. For 
an engineering application with expensive 
experimental cost, the number of training samples 
will be limited, which will greatly affect the generality 
of the prediction model. In light of the limited 
prediction ability, the search of the neighboring 
regions surrounding the training samples is more 
reliable but will only provide a quasi-optimum. The 
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verification of the optimum will be applied to retrain 
the network. Therefore, the prediction accuracy of the 
model will improve in an evolving fashion especially 
for the most probable region of design optimum to 
increase the sampling efficiency. 
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Fig. 2 Optimization flowchart of PREGSEN. 

 
The proposed BPN model consists of a typical 

three-layer structure, namely, an input layer, a hidden 
layer and an output layer. In this study, Taguchi’s 
orthogonal arrays are suggested for the design of 
training samples to reduce the number of experiments, 
which is particular effective for design optimization 
involving expensive experiments or time-consuming 
simulations. The control variables are factorized in the 
preliminary investigating range. A minimal 
three-level orthogonal array is used for the learning 
samples, and a minimal two-level orthogonal array 
distributed in the middle of the variable range is used 
for the testing samples. Learning samples are used to 
determine the weighting matrices among neurons, 
and testing samples to determine the accuracy and the 
generality of the network.  

2.2. Extrapolation Distance (ED) 

For a neural network trained from limited number of 
training sampling, the reliability of the model might 
be restricted to the neighboring space of learning 
samples, particularly for a complex system. 
Experiences tell that the prediction accuracy of the 
model is getting worse if the predicted design is far 
away from the training samples. The mean Euclid 
distances, rij, between the predictive designs Di and 
the sample data Sj are defined as follows: 
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where Di = [di1, di2, …, din],  Sj = [sj1, sj2, …, sjn], and n 
represents the number of variables. 

As a rule of thumb, the prediction accuracy for 
the interpolating designs of a neural network model is 
better than the extrapolating designs. Also, the closer 
the predictive design to the training samples, the 
higher prediction accuracy. This study proposes the 
ED as a neighboring index of a predictive design, 
which is defined as the minimum mean Euclid 
distances between the prediction and the training 
samples. 
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To facilitate the calculation of the distance among 
designs, the values of the continuous variable xk are 
normalized to zk using the following transformation: 
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where max(xk) represents the maximal and min(xk) 
represents the minimal values of the design variable 
xk in the training samples.  For discrete variables, the 
factorial values are assigned equally spaced between 
-1 and +1. 

The interpolating designs often have higher 
prediction accuracy than extrapolating designs in 
neural network models. This study defines the 
smallest convex hyper polyhedron surrounding all 
training samples as the Sampling Enclosure Envelope 
Space (SES) that is used to differentiate interpolation 
design and extrapolation designs in a 
multidimensional simulation model. The boundary of 
SES is constructed by a set of n-dimensional 
hyper-planes which are determined by n 
non-coplanar points from the training samples. If the 
prediction point is inside or on the boundary of SES, it 
is an interpolating design; otherwise, the prediction 
point is an extrapolating design. A two dimensional 
example is shown in Fig. 3, where D1 is an 
interpolating design and D2 is an extrapolating 
design. 
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Fig. 3 Extrapolation distances of predicted designs for a 
two-dimensional example. 

 
The training samples are represented as 

normalized coordinates z1 and z2 to calculate the EDs 
for predicting designs. The ED is assumed positive for 
an extrapolating design, and negative for an 
interpolating design.  For instance, an NN is trained 
from five samples, S1 ~ S5, as shown in Fig. 3.  The 
ED of the interpolating design D1 is designated as 
“-r15” because r15 is the shortest mean Euclid distances 
among r1i, i =1~5. Likewise, the ED of the 
extrapolating design D2 is “+r21”. For an interpolating 
design with a small ED, it is expected to have a better 
prediction accuracy, and for an extrapolating design 
with a large ED, the prediction accuracy is likely 
doubtful.  

2.3. The Fuzzy Reasoning of the Prediction 
Reliability 

Fuzzy systems are widely used in engineering 
applications to convert the expert knowledge into a 
mathematic reasoning model. Typical fuzzy systems 
consist of a fuzzifier, a fuzzy rule base, a fuzzy 
inference engine, and a defuzzifier [12]. The fuzzifier 
converts the input data into linguistic fuzzy variables. 
The expert’s reasoning is then expressed as a set of 
fuzzy conditional statements based on the fuzzy 
variables. The decision can be reasoned from the 
fuzzy inference engine followed by a defuzzifier to 
convert the linguistic conclusion into a crisp output. 

Here a fuzzy model is proposed to determine the 
prediction reliability. The prediction reliability of the 
network model will be related to the Extrapolation 
Distance of a predictive design. The association of 
prediction reliability and extrapolation distances is 
based on two fuzzy concepts.  One is to assign less 
reliability for the prediction point with a farther 
distance from the learning samples, and the other is to 
assign less reliability for extrapolating designs than 
interpolating designs. Seven single-input single 
output inference rules are proposed based on the 
nature of simulated models as follows: 

 
R1: If the ED of the design is PB then prediction reliability is 

Bad. 
R2: If the ED of the design is PM then prediction reliability 

is Poor. 
R3: If the ED of the design is PS then prediction reliability is 

Fair. 
R4: If the ED of the design is ZE then prediction reliability is 

Excellent. 
R5: If the ED of the design is NS then prediction reliability is 

Good. 
R6: If the ED of the design is NM then prediction reliability 

is Fair. 
R7: If the ED of the design is NB then prediction reliability 

is Poor. 
Seven linguistic levels are defined to describe the 

condition variable ED: PB(Positive Big), PM(Positive 
Medium), PS(Positive Small), ZE(Zero), NS(Negative 
Small), Negative Medium (NM), and NB(Negative 
Big).  Five levels are defined to describe the 
assessment results for the prediction reliability: 
Excellent, Good, Fair, Poor, and Bad. Because a small 
orthogonal arrays are used for the training samples, 
the maximum extrapolation distance, , can be 
approximated using random sampling in the 
preliminary variable range, and used in the definition 
of the membership function for the linguistic levels of 
ED. Standard membership functions associated with 
these statements are illustrated in Fig. 4 and Fig. 5. A 
simple center average defuzzifier is applied to derive 
the prediction reliability.  Fig. 6 is the prediction 
reliability contour plot for a two-dimensional case 
using the fuzzy inference. The five solid dots in Fig. 6 
represent the training samples in the simulated 
network. The fuzzy model can generally represent the 
intrinsic characteristic of the prediction reliability of a 
network model. 

 

PS PM PBNB NM NS

Interpolation Extrapolation

0

ZE
1.0

ED

0.5-0.5-1.0-1.5 1.0 1.5 

 

Fig. 4 Membership functions of the condition levels of ED. 
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Fig. 5 Membership functions of the assessment levels of 
prediction reliability. 
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Fig. 6 Prediction reliability contour plot for a 
two-dimensional example with five training samples 

2.4. The Search for the Model Optimum Using 
Genetic Algorithm 

Taking advantage of the fast recall of neural network, 
GA is applied to search for the optimum of the trained 
network model established form engineering 
problems to reduce experimental costs. Genetic 
algorithms are categorized as global search heuristics, 
and capable of searching for a global optimum for a 
simulated model. Optimizing GA search is not the 
focus of this study. Any improvement over the 
searching efficiency of GA in previous literatures can 
be applied to search for the model optimum. Whether 
the model optimum is the exact optimum of the 
engineering system depends on the accuracy of the 
simulated model. If a perfect network model for the 
system is available, the searched optimum will be the 
exact optimum. However, a great number of training 
samples will be required, which is not cost realistic in 
engineering applications. The prediction generality of 
a simulated network is limited if the number of 
training samples is deficient. A unbounded search of 
the trained network might lead to erroneous results.  

Here, the fuzzy inference of the prediction 
reliability is introduced to the definition of fitness 
function to prioritize the searching domains to the 
neighboring space of training samples, and thus 
ensures the searching reliability. The training samples 
are assumed to be the initial population in this study. 
For each generation in the evolution, the designs in 
the population are sorted and ranked from the best to 
the worst based on the predicted responses from the 
simulated network and the Prediction Reliability from 
the fuzzy inference. The fitness function is defined to 
be the sum of the Response Rank and the Reliability 
Rank as shown in Eq. (4). During the evolution 
processes of mutation, crossover, and reproduction, 
the design with higher rank will have advantage in 
the evolution selection using roulette wheel selection 
[10]. This definition of the fitness function will ensure 

the prevailing of a reliable optimum at the end of 
evolution. 

Fitness = Response Rank + Reliability Rank (4) 

By a series iteration of selection and reproduction, 
the GA search will provide a quasi-optimum of the 
network model. The current model is possibly lack of 
generality due to scarce training samples. Because of 
the inclusion of prediction reliability to the fitness 
function, GA tends toward a conservative search 
surrounding training samples with a balance between 
reliability and optimality. The theoretical optimum of 
the trained model is not desirable if the optimum is 
far away from training samples because of a possible 
enormous prediction error. The quasi-optimum, on 
the other hand, is more reliable even for a deficient 
simulated model.  

2.5. Iterative Training and Search for Design 
Optimum 

The verification result of the quasi-optimum will be 
introduced to the learning samples to retrain the 
model. Only one verification experiment is required 
for the optimum obtained from the guided GA search 
of the evolving network model. Although the guided 
search using the prediction reliability might restrict 
the search domain to the neighboring space of 
training samples, the search space will be modified as 
the addition of new samples from the verification of 
optimum. If the addition learning sample is an 
extrapolating design, the SES in the reliability 
inference will expand, and the searching range in GA 
will adjust dynamically due to the normalization 
process and the fuzzy inference.  

The proposed algorithm will secure the reliability 
of the searched optimum in iteration, and evolves the 
exploration range automatically. Global accuracy of 
the simulated model is not necessary for the search of 
optimum. Instead of increasing sampling points 
evenly distributed in the investigating range, 
additional sampling points will congregate in the 
most probable region of the global optimum using the 
proposed algorithm. The sampling efficiency will thus 
increase, which is particularly important in 
engineering applications. The training and searching 
process iterates until the reach of convergence of the 
predicted optimum. The quasi-optimum will 
gradually approach the global optimum. The 
convergence criteria include (1) the convergence of the 
predicted optimum and the verified result, and (2) the 
variation of the last three searched optimum within 
engineering tolerance. For engineering practice, a 
trade-off between design improvements and 
experimental costs is a more important concern. 

3. OPTIMIZATION OF BLOW MOLDING 



YU AND JUANG 

Journal of Applied Polymer Science 

228 

PROCESSING CONDITIONS FOR 
PERFORMANCE DESIGN  

This session presents the application of the proposed 
optimization strategy to obtain the optimal parameter 
design of extrusion blow molding process for a High 
Density Polyethylene (HDPE) bottle. Two types of 
loading usually used in industrial applications are 
investigated including an internal pressurization at 90 
(psi) and a top displacement of 3.75 (mm) for 5 
seconds as illustrated in Fig. 7.  The maximum 
allowable stress, corresponding to the ultimate tensile 
strength of the material, is 33 MPa.  For this material, 
the Young’s modulus is 879 MPa and the thickness 
shrinkage is 5%. The simulating software of blow 
molding, BlowSim, is applied to estimate the 
thickness distribution of the blown bottle. A finite 
element analysis software, ANSYS is used for the 
structural analysis of the bottle. 

P

T

 
Fig. 7 Two mechanical testing loads of the HDPE bottle: an 
internal pressurization and a top displacement loading 

3.1. The Formulation for Performance 
Optimization 

The design objective is to obtain a wall thickness 
distribution of minimal weight by manipulating the 
die gap programming subject to the stress distribution 
below the allowable level. The initial formulation for 
this optimization can be represented as follows, 

Minimize: Part_Weight [P(tj)] 

Design Variable: P(tj) , j=0 ~ 6. 

Constraints: si[P(tj), P, T]≦σa  

where P(tj) are the die gap openings of the controlling 
points as illustrated in Fig. 1, si are the stresses of node 
i, a is the allowable stress of the material, P is the 
internal pressure load, and T is the top displacement 

load. 
The reduction of an element thickness results in 

the increase of its stress level. To increase the material 
efficiency, the stress distribution should be as close to 
the allowable stress as possible. The smaller variance 
of the stress distribution, the closer the mean can be 
moved toward the material yield strength, which 
leads to thinner elements, and thus reduce part 
weight.  However, any element stress exceeding the 
allowable strength might result in part failure. In this 
work, the constrained optimization problem is 
replaced by an unconstrained minimization of the 
variance of stress distribution around the allowable 
stress level and the constraint penalty function as 
illustrated in Fig. 8. 

 

Allowable
Stress

Stress 
Distribution

Stress, σ

O
bj

ec
ti
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Penalty
value

Loss
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Mean
Stress  

Fig. 8 Illustration of the design objective for performance 
optimization 

 
The modified objective function (MOBJ) (Eq. 5) 

contains two portions: the quality loss due to 
variation of stress distribution and the penalty loss 
due to constraint violation. 
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where n is the total number of nodes of the simulation 
model, si  the stress of node i, and a the allowable 
stress of the bottle material. 

The quality loss due to variation of stress 
distribution is estimated by the mean squared 
deviation of the Von-Mises stress from the allowable 
stress.  The average quality loss can be reformulated 
into two parts: the deviation of the mean stress from 
the allowable stress and the variation of the stress 
around mean, 
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where is  is the mean stress and v is the distribution 

variance from the structural analysis.  Reducing the 
quality loss leads to a smaller stress distribution and a 
mean stress closer to the allowable stress. 
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The second portion of the modified objective 
function, the penalty loss, is formulated using a 
second order singularity function as shown in 
equation (7). This portion accounts for the penalty of 
the FEM nodes violating the stress constraint. 









aiai

ai
ai ss

s
s





 if ,)(

 if            ,0
2

2  (7) 

The search for the design of minimum objective 
function will increase the material efficiency and thus 
provide a thickness distribution of minimum part 
weight while satisfying the loading requirements. 

3.2. Design optimization using Taguchi 
method 

Taguchi method applies the analysis of means 
(ANOM) to estimate parameter sensitivities, which is 
popular in engineering applications. The die gap 
openings at 7 discrete extrusion times are selected as 
the design variables: P(t0), P(t1), P(t2), P(t3), P(t4), P(t5), 
and P(t6) to control the parison thickness at 7 evenly 
distributed sections.  The initial design adopts a 
uniform die gap opening of 75%.  Assume three-level 
for each design variable, a minimal orthogonal array 
of L18 is selected as the experimental design (Table 1).  
The factorial levels locate the initial design in the 
middle of the design space of 55~95% for each 
opening. The logarithm transformation of the 
modified objective function will be used as the 
signal-to-noise ratio (S/N) for Taguchi’s parameter 
design.  

)log(10/ MOBJNS   (8) 

Fig. 9 is the effect plot for the die opening from 
the experimental design of Table 1. A design with 
higher S/N ratio has a smaller value of the objective 
function. Taguchi’s parameter design scheme suggests 
the optimum treatment to be A1B3C3D1E1F3G3.  The 
verification result using BlowSim and ANSYS for 
Taguchi’s optimum shows a S/N ratio of –37.29 (dB) 
which is very different from the predicted value of 
-25.63 (dB) using Taguchi’s additive model. The 
verified performance of the predicted optimum is not 
even the best among the design experiments. The 
parameter design using Taguchi method fails due to 
possible reasons including the interactions among 
variables and significant system nonlinearity. 

 
 

Table 1. Experimental design using L18 orthogonal array 

L18 
A 

P(t0) 
B 

P(t1) 
C 

P(t2) 
D 

P(t3) 
E 

P(t4) 
F 

P(t5) 
G 

P(t6) 
MOBJ a S/N 

1 55 55 55 55 55 55 55 21791.25 -43.38

2 55 75 75 75 75 75 75 4625.35 -36.65

3 55 95 95 95 95 95 95 3308.56 -35.20

4 75 55 55 75 75 95 95 650545.19 -58.13

5 75 75 75 95 95 55 55 214988.62 -53.32

6 75 95 95 55 55 75 75 5544.66 -37.44

7 95 55 75 55 95 75 95 64469.80 -48.09

8 95 75 95 75 55 95 55 6349.12 -38.03

9 95 95 55 95 75 55 75 119726.34 -50.78

10 55 55 95 95 75 75 55 1245531.06 -60.95

11 55 75 55 55 95 95 75 25238.52 -44.02

12 55 95 75 75 55 55 95 7907.71 -38.98

13 75 55 75 95 55 95 75 645177.17 -58.10

14 75 75 95 55 75 55 95 1565.06 -31.95

15 75 95 55 75 95 75 55 31459.45 -44.98

16 95 55 95 75 95 55 75 997229.07 -59.99

17 95 75 55 95 55 75 95 222059.20 -53.46

18 95 95 75 55 75 95 55 5040.66 -37.02

Initial 75 75 75 75 75 75 75 8229.76 -39.15

 a MOBJ: Modified Objective Function 
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Fig. 9 Effect plot for the die opening during the blow 
molding of the bottle 
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3.3. Optimization of Bottle Thickness 
Distribution using PREGSEN 

3.3.1. Establishing the simulated Neural Network 
model 

Training samples are essential to the prediction 
quality of network models. The L18 orthogonal array 
from previous Taguchi’s application is used as 
learning samples to reduce the number of 
experiments and to maintain a good sample 
representation.  Another two–level orthogonal array 
(L8) illustrated in Table 2 is selected as the testing 
samples for the network training. The level values, 
65% and 85%, are set in between the 3-level values, 
55%, 75% and 95%, of the learning samples. 

The steepest gradient method is assumed to train 
the weighting matrices of the Back Propagation 
Network (BPN). There is no definite rule available to 
determine appropriate parameters in the networks 
training. This study applies a simple Taguchi’s 
parameter design to determine the number of neurons 
in the hidden layer, the initial learning rate, the 
decreased learning rate, and the increased learning 
rate. Three-level factorial parameters are assumed. 
The optimal parameter design is derived using an L9 
orthogonal array experiments and the analysis of 
mean (ANOM) for the optimal training efficiency at 
first 10 epochs. The parameter design in this case 
suggests 19 neurons in the hidden layer, the initial 
learning rate of 0.5, the decreased learning rate of 0.85, 
and the increased learning rate of 1.15. 
 

Table 2. Testing samples using L8 orthogonal array 

L8 
A 

P(t0) 
B 

P(t1) 
C 

P(t2) 
D 

P(t3) 
E 

P(t4)
F 

P(t5) 
G 

P(t6) 
MOBJa S/N 

1 65 65 65 65 65 65 65 34842.0 -45.42 

2 65 65 65 85 85 85 85 438815.8 -56.42 

3 65 85 85 65 65 85 85 4051.5 -36.08 

4 65 85 85 85 85 65 65 10328.1 -40.14 

5 85 65 85 65 85 65 85 3880.4 -35.89 

6 85 65 85 85 65 85 65 153796.5 -51.87 

7 85 85 65 65 85 85 65 17050.2 -42.32 

8 85 85 65 85 65 65 85 45926.9 -46.62 
a MOBJ: Modified Objective Function 

 

3.3.2. Evolving modeling and optimization 

As illustrated in Fig. 2, the prediction reliability is 
introduced to the fitness function of the optimization 
search using GA. The anchor parameter in the 
member function of Fig. 4 is 1.4 for this experimental 
design of (L18 + L8). The training samples are used as 
the initial population in each epoch. Each sample 
needs to be encoded by a gene using a binary genetic 
algorithm (BGA). In this study, the bit length of 
encoded chromosome is assumed 12. Because that the 

design variables have been normalized using Eq.(3), 
the searching boundary in GA is set to be 1.5 to 
explore possible optimum outside the preliminary 
design space. The simulated Neural Network model 
will then provide the response estimation for each 
chromosome combination.  

The probability of crossover should have a larger 
value; typically Pc ranges from 0.5 to 1.0. The 
single-point crossover and mutation were used in this 
studied. The mutation operator must be used with 
low probability; typically, the mutation probability 
ranges from 0.01 to 0.1. Again, the parameters of the 
GA were obtained using Taguchi’s parameter design. 
In the GA search of the evolving network model, the 
initial population size of 26, the crossover rate of 0.8, 
the mutation rate of 0.1, the optimization tolerance of 
0.01, the maximum generations of 300, and the elitist 
strategy [25] are used.  

If the prediction reliability of the current network 
model is not considered, the iteration is a simple 
iteration of neural network and genetic algorithm 
(NNGA). GA will assume global accuracy in the 
investigating range and search for a design with the 
best performance in the current simulated model. The 
derived optimum from the GA search might be 
different from the actual optimum of the engineering 
system due to the imperfection of current simulated 
model. The searched optimum is verified using 
BlowSim analysis and the verification design is added 
to the previous learning samples to retrain the 
network model. The iteration process of this 
conventional NNGA is shown in Fig. 10. The result 
shows a continuous discrepancy between the 
predicted optimum and the verified results due to the 
lack of sufficient generality for a simulated network 
from limited training samples. The iteration process 
has not shown convergence yet after 51 iterations.  

Next, the proposed algorithm, PREGSEN is 
applied to the same problem. The fitness function is 
modified using the fuzzy prediction reliability. As 
illustrated in Fig. 11, although the verified value and 
the quasi-optimum of the initial network model 
obtained using prediction reliability guided GA 
search are still different due to lack of generality of 
the initial model. The difference is greatly reduced 
due to a more reliable quasi-optimum is provided 
from the reliability guided search. As the addition of 
the quasi-optimum to the learning samples to retrain 
the evolving network model, the iteration quickly 
converges.  

The convergence criteria are defined as (1) the 
prediction error of the objective is less than 5, and (2) 
the coefficient of variation (COV) of the last three 
searched optima is less than 0.001. Although the 
iteration result seems to converge at iterations 15 and 
25 as shown in Fig. 11, there is significant constraint 
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violation as we examine their corresponding 
objectives (Table 3). The penalty loss represents that 
the stresses of some FEM nodes exceed the allowable 
stress of the bottle material which might result in part 
failure. Also they haven’t met the convergence criteria. 
Both criteria are reached at iteration 48. There is no 
constraint violation. The prediction error is 3.2 and 
the COV is about 0.00005. The optimum die gap 
opening is listed in Table 4. 
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Fig. 10 Iteration result for a simple recursion of NN and GA 
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Fig. 11 Iteration result using PREGSEN 

3.4. Comparison of the results 

This session compares the optimization results from 

the proposed method with Taguchi method and a 
simple iteration of NN-GA in terms of the design 
feasibility, part weight, and searching efficiency. Fig. 
12 represents the profiles of optimal die gap openings 
of parison programming, and Table 5 shows the stress 
distributions under test loads for the initial design 
and the optimums obtained from various methods. 
Taguchi’s ANOM approach is liable to parameter 
interactions and system non-linearity, and fails to find 
a lighter weight design than the initial design. The 
optimum from Taguchi method has a larger 
distribution and a smaller mean stress, which results 
in a poor material efficiency, and still a strong 
violation for the stress constraint. 
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Fig. 12 The die gap opening for various optimal designs. 

The iteration result for a conventional recursion 
using NN and GA shows a continuous discrepancy 
between the predicted optimum and the verified 
results as shown in Fig. 10, which is due to the lack of 
sufficient generality for a simulated network from 
limited training samples. The iteration process has not 
shown any convergent tendency yet after 51 iterations. 
Although, the current optimum from the conventional 
NN and GA seems to have a lighter weight, the 
design is infeasible due to constraint violation. 

Table 3  Comparison of different iterations 

Iteration No. Predicted Objective Quality Loss Penalty Loss Verified Objective Prediction errora COV b 

15 1349.7 467.3 861.7 1329.0 20.7 0.0079 

25 1222.4 470.9 779.0 1249.8 27.4 0.0055 

48 452.7 453.9 0.0 453.9 3.2 0.00005 
a  Prediction error = the difference between the predicted objective and the verified result 
b  Coefficient of Variation (COV) = the standard deviation divided by the mean of last three searched objectives 

 

Table 4 PREGSEN’s optimum 

 P(t0) P(t1) P(t2) P(t3) P(t4) P(t5) P(t6) Objective S/N 

PREGSEN’s Optimum 69.0 73.2 97.0 57.9 79.8 28.4 96.5 453.9 -26.57 
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PREGSEN provides a much reliable and efficient 
search as shown in Table 5. The definition of the 
fitness function will suppress the exploration of the 
regions far away from the current training points even 
the prediction from the current network model looks 
promising. However, exploration range of GA will 
grow dynamically as the addition of new training 
samples from the when the verification of the 
predicted optimum. PREGSEN has reached the 

optimum convergence at iteration 48. PREGSEN’s 
optimum exhibits the smallest stress deviation and 
leads to a design with the weight of 114.31 (g) while 
satisfying the stress constraints.  Fig. 13 is the 
comparison of the stress distribution under test loads 
using ANASYS, and shows that PREGSEN’s optimum 
has the most even stress distributions among various 
designs. 
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Fig. 13 Comparison of the stress distribution under test loads 
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Table 5 Comparison of various optima 

 Mean Stress Std. Dev. Stress Quality Loss Penalty Loss Objective Weight (g) 

Initial 13.95 8.78 439.8 7789.9 8229.7 118.7 

Taguchi’s 12.84 9.36 494.1 4868.2 25362.3 119.2 

NNGA’s 12.76 7.39 464.3 14.0 478.3a 110.5a 

PREGSEN’s 12.62 6.21 453.9 0.0 453.9 114.3 
a Not yet converge at the iteration of 51. The listed result is the best design so far. 

 

4. CONCLUSIONS 

This study has presented an integration strategy for 
the part design and the process control of extrusion 
blow molding parts. The strategy minimizes the part 
weight subjected to mechanical constraints and 
provides the optimum die gap programming in one 
optimization process. The material efficiency in terms 
of stress distribution from the structure analysis of the 
predicted thickness profile of the bottle is used as the 
design objective. The mechanical constraints are 
embedded to the design objective using a penalty 
function to ensure design feasibility. The search of the 
optimum die gap programming of the extrusion blow 
molding process will then provide a feasible design 
with minimum part weight. A case study on a bottle 
design was presented, and the comparison results 
showed that the proposed strategy is capable of 
minimize the part weight without violation of 
mechanical constraints in a robust searching 
reliability.  

Finally, the searching scheme, PREGSEN, 
proposes an evolving network model that starts from 
a small number of training samples using Taguchi’s 
orthogonal array and selectively evolves for the most 
probable space of design optimum to increase 
sampling efficiency. For complex simulation systems 
as the finite element analysis of structure mechanics 
and extrusion blow molding process, the number of 
engineering simulations will greatly affect 
optimization cost. However, generality imperfection 
is inevitable for a simulated model from small 
training samples even though great endeavors are 
applied to the training of neural network.  

The prediction reliability of the network model is 
likely restricted to the surroundings of the learning 
samples. The accuracy of extrapolating prediction 
depends on model complexity. If the model is nearly 
linear, the extrapolating prediction will be pretty 
accurate. As the model nonlinearity increases, 
extrapolating accuracy decreases because of unknown 
trend out of data range, especially for designs farther 
away from the data range. Although extrapolating 
designs are less reliable, ruling out possible better 

designs outside the range of current learning samples 
is not desirable for optimum search. The proposed 
optimization scheme applies the fuzzy reasoning of 
the prediction reliability for the evolving network 
model to guide the GA search for a reliable 
quasi-optimum instead of a false optimum of the 
imperfect network model. The methodology aims to 
balance reliability and optimality. Verification of the 
provided optimum will be added to the learning 
samples to retrain the network model. If the predicted 
optimum is interpolated, the verification refines the 
regional accuracy of the network model to further 
approaching the actual peak. If the predicted 
optimum is extrapolated, the verification suggests 
additional information to explore probable region of 
optimum and modifies the current network model. 
The searching and retraining processes iterate until 
the convergence of the search result. The illustrated 
example shows a stable and efficient iteration process 
and demonstrates the merit of the proposed method.  
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