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ABSTRACT 
This paper describes a novel design of exploration 

vehicle, ACV, and the scheme of motion control and path 
planning using the virtual prototyping system. ACV 
possesses the high local mobility and obstacle crossing 
ability due to the design of four independent drives and the 
active rock arms. An integrated design environment is 
established using ADAMS and Matlab/Simulink to 
simulate the vehicle kinematics, the interaction between the 
environment and the vehicle, the motion planning 
algorithm, the dynamic behavior, and the control strategy. 
A prototype path planner, the Modified Tangentbug 
Algorithm (MTA), is described and implemented to the 
navigation of the virtual vehicle. MTA generates a feasible 
path to avoid blocking obstacles, and to stride over 
passable obstacles in a known environment. The generated 
path is then decomposed into a sequence of motion 
commands written in ADAMS macros to control the 
vehicle. At last, a prototype ACV is described, and the 
interface structure between the simulation platform and the 
prototype is presented. 
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1. Inroduction 
In some cases, such as hazard environments and 

extraterrestrial exploration, where a manned task is 
prohibited, an autonomous unmanned rover that can adapt 
to the various severe terrain is an alternative for the 
investigation purpose.  There are many studies done about 
various candidates regarding the exploration rover. Related 
configuration designs for the wheeled roving vehicles are 
the Jet Propulsion Laboratory's CARD (Computer-Aided 
Remote Driving) rover [9], WAAV (Wheeled Actively 
Articulated Vehicle) [4][8], and the Rock 7 [6]. The JPL 
CARD design is a six-wheeled rover that is composed of 

three modules and two passive articulations. It is a direct 
derivative of a design for a lunar rover [10]. WAAV adopts 
a similar configuration with six independently actuated 
driving wheels and two active articulations with three 
degrees of freedom. The actively coordinated wheeled 
vehicles [7] have shown to possess considerable 
advantages in providing these capabilities as compared 
with a passive vehicle system. With the aid of the active 
articulation design, obstacle-crossing ability has been 
greatly enhanced. WAAV can negotiate uneven terrain 
including vertical steps and horizontal gaps.  

This study will introduce a novel design of 
exploration vehicle, Adaptive Configuration Vehicle (ACV), 
and present the virtual prototype procedure to integrate the 
kinematics analysis, the path planning, the motion control, 
and the simulation of terrain negotiation, using the dynamic 
analysis system, ADAMS. A physical prototype of ACV is 
thus built to verify the design.   

2. Adaptive Configuration Vehicle 
ACV [3] possesses the similar obstacle crossing 

capability as WAAV but using a simpler four-wheeled 
design. ACV is designed to travel on the artificial 
environments where the capabilities of avoiding blocking 
obstacles and crossing regular obstacles, such as steps and 
gaps are required. We assume that the working 
environment of the vehicle is known, and neglect the vision 
module at the current study.  

ACV is composed of a body module and four 
independently actuating wheels attached to two active rock 
arms as shown in Figure 1. The batteries and the control 
module are stored on the body module. There is another 
passive wheel beneath the body module for balance 
purpose. There are eight actuators in the vehicle. In 
addition to four driving wheels, two motors control the 
angle of the front wheel arms for steering purpose. The 
front wheel arm design enables ACV to spin on the middle 
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of the rear wheel pair. The other two motors lift the rock 
arm when striding over obstacles. ACV can adapt the 
vehicle configuration to uneven terrains and cross some 
obstacles, such as vertical steps and horizontal gaps  

 
Figure 1: The structure design of ACV 

3. Motion Simulation 
This study applies ADAMS as a virtual design 

platform to integrate the kinematics simulation, the 
interaction with environment, the control strategy, and the 
path planning module. ADAMS is based on multi-body 
theories that are suitable to analyze complex motions [12]. 
MATLAB/Simulink [13] is used to design the motion 
control kernel of ACV. These tools assist efficiently in 
evaluating and analyzing our concept before the 
manufacturing of the prototype. 

The 3D model of ACV is built in ProE and imported 
into ADAMS by the Mech/Pro interface module. The 
Mech/Pro Interface can transfer not only the complete 
geometries, but also the definitions of mass properties, 
joints, and motions. The environment of the vehicle is 
constructed using ADAMS as well. We then define the 
relationships between the tires and the environment using 
the TIRE STATEMENT. Besides, we build several road 
types to investigate the negotiation capability of ACV when 
traveling on different terrains. 

3.1. Motion Commands 

The motion control of ACV is predefined into eight 
motion commands written as the macros of ADAMS. The 
summary of the motion commands is listed in Table 1. 
Each command is associated with the control parameters 
listed in Table 1, and a corresponding time sequence of the 
actuators, such as Figure 2. FWM and BWM are motion 
commands for straight move. SPIN pivots ACV for a given 
angle on the middle of the rear wheel pair. RTN and LTN 
are commands for turning ACV round a given center. There 
are three more motion commands for crossing the obstacles 
with the help of two active rock arms. USTEP and DSTEP 

will command ACV to surmount and climb down a 
negotiable high step. CRG simulates the motion to go 
across a wide gap (Table 2). To facilitate the execution of 
the motion macros, we design a customized GUI interface. 
This GUI interface serves as the integrated control panel of 
ACV for the path planning, the actuator control, and the 
motion simulation. 

By using the motion simulation of ADAMS, we can 
determine the feasibility of the control logic. When the 
results show any instability at specific conditions, 
compensators can be added into the system to improve the 
vehicle stability. For the design of compensators, we define 
the inputs and outputs of the control system by 
ADAMS/Controls interface linked with 
MATLAB/Simulink to integrate the mechanism and control 
system. 

Table 1: Motion commands of ACV 
Motion 

commands
Motion 

Discription 
Motion 

Parameters 
FWM Straight forward moving  Speed, Distance 
BWM Straight backward moving  Speed, Distance 
USTP Climb up a step Height 
DSTP Climb down a step Height 
CRG Stride over the gap Width 

RTN Right turn by arc Angular displacement, 
Center 

LTN Left turn by arc Angular displacement, 
Center 

SPIN Spinning on the middle of the 
rear wheel pair 

Direction, Spin angle 

 
Table 2: The illustrations of the motion commands of ACV 
Motion

commands 1st snapshot 2nd snapshot 3rd snapshot 

SPIN 

 

LTN 

 

USTP 

 

CRG 

 

3.2. Simulation of Control Module 

MATLAB/Simulink receives the information of plant 
transferred from ADAMS/Controls, and implements the 
design of controller. For DC servomotors, we can control 
angular speed and position. The PID controller is used to 
control the output error. The control parameters of the 
corrected movement are then passed to ADAMS. 
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The ACV has a autonomous path planning capability. 
Given a destination in a known environment, the path 
planning module can generate a feasible path and converts 
the path into a series of motion commands as shown in 
Figure 3. The motion commands then pass to the control 
kernel to implement the position control. Detailed strategy 
of path planning will be discussed in the next section. 
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Figure 2: The time-sequence diagram of the motors for 
climbing up a step (USTP) 

 
Figure 3: ACV travels in the virtual environment 

4. Strategies of Path Planning 

4.1. Relevant Algorithms 

To make unmanned missions possible, the 
exploration vehicle should be able to generate the moving 
path to a given destination. Relevant work can be divided 
into three major categories: “classical “ path planners, 
heuristic planners, and sensor-based motion planners. 
“Classical” planners assume full knowledge of the 
environment. Heuristic planners are based on a set of 
“behaviors”, and can be applied to unknown 
environment[11]. However, heuristic planners do not 
guarantee to reach the goal. Sensor-based motion planners 
rely solely on the rover’s sensor and yet guarantee 
completeness. 

Kamon et al [5] proposed the Tangentbug algorithm 
that is a sensor-based motion planner. The Tangentbug 
algorithm uses range data from an omnidirectional camera, 
Local Tangent Graph (LTG), to choose the local optimal 
direction while moving towards the target. If a obstacle is 

in the path to target, a tangent line from the current robot 
position to the obstacle will be the first move following by 
a boundary following until the target is not blocked by the 
obstacle. LTG iterates until the target is reached. 

The Wedgebug algorithm [14] improves the 
shortcomings of Tangentbug. It uses a stereo pair of 
cameras mounted on a pan-able mast. Instead of an 
omnidirectional view at every step, the planner scans only 
specific areas to avoid unnecessary sensor scans and rover 
motion. The rover is modeled as a point robot in a 2D 
binary environment. Obstacle boundaries block sensing as 
well as motion. The planner consists of two modes: 
motion-to-goal and boundary-following. Its extended 
version, called the Roverbug Algorithm, has been 
implemented on the JPL’s Rocky7 prototype microrover 
[11]. Roverbug calculates the obstacles’ silhouettes to relax 
the assumption of a point robot rover. The basic operation 
of Roverbug Algorithm includes calculating obstacles’ 
convex hulls, looking in the appropriate direction, and 
increasingly building and executing each subpath until the 
goal is reached. 

Cunha et al. [1] and Yamamoto et al. [2] are two 
classical path planners that use cell decomposition 
technologies to get the feasible and the optimal trajectories 
toward the goal. The environment is assumed known and 
obstacles are transformed to circumscribed polygons. 
Feasible trajectories are consisted of lines, arcs, and splines. 
Traveling time is used as the objective to determine the 
best path. 

4.2. Modified Tangentbug Algorithm (MTA)  

The above algorithms only consider the strategy to 
avoid obstacles, but neglect the situations where passing 
through certain obstacles is possible if the rover has the 
obstacle-crossing ability like ACV. Besides, path planners 
should include controlling cost in the selection of the 
optimal path. The control of rovers to follow a path 
consisted of splines and irregular contours will be very 
difficult. The theoretical optimal path may not be suitable 
for practical purpose. Plus, slippery between wheels and 
loose terrains will make complex paths unrealistic. A 
simple path consisted of lines and arcs will be much easier 
to realize. 

This study modifies the Roverbug Algorithm to 
address the path planning needs of ACV. The environment 
is assumed known although MTA can be easily adapted to 
the range data obtained from the rover sensors. A morphing 
technique is first applied to transform the environment to a 
2D map. The path planner iterates between two motion 
modes, the To-Goal Mode and the Obstacle Mode, until the 
target is reached. The schematic flowchart of MTA is 
shown in Figure 4. 
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Figure 4: Flowchart of Path planning 

 
 (a) Skirting by arc (b) Skirting by polyline 

Figure 5: Two different paths for the two morphing 
geometry of the obstacle 

Morphing of Obstacle 

The obstacles are first enlarged to include the 
required clearance between the pivot of ACV and the 
obstacles. Blocking obstacles are simplified as 
circumscribed polygons and circles, and steps and gaps are 
simplified as polyline. The environment is thus represented 
as a two dimensional map for path planning. There are 
various shapes for the obstacles in the real environment, so 
the morphing of obstacles is very helpful to simplify the 
complex circumstances. Two basic shapes of obstacle, 
circles and polygons, are considered in the morphing 
process. These two shapes fit the basic motion commands 
of ACV: the straight moving, spinning, and the arc turning. 
Detailed morphing procedure is awaited future 
investigation. For the example in Figure 5, the shape of the 
obstacle can be morphed into a circle or a rectangle to 

reduce the number of turns for ACV. A shorter path doesn’t 
guarantee a shorter controlling time. The final choice 
should consider the actual performance of motors and 
controllers.   

Basic Planning Mechanism of Motion Modes 

The path planner has two basic motion modes: 
To-Goal, and Obstacle Modes. There are two sub-modes of 
the Obstacle Modes. One is to avoid the obstacles by 
skirting the morphing boundary of the obstacle. Depending 
on the type of obstacle, the planner will use arc or polyline 
motion to skirt the obstacle. The other sub-mode is to stride 
over the obstacles if they can be crossed, such as steps and 
gaps. In such a case, ACV will approach these types of 
obstacle vertically to reduce the crossing distance. 

The path planner will use the two dimensional map 
from the morphing process to design the path. ACV starts 
from a direct move toward the goal until reaching the 
boundary of a morphing obstacle, such as the S1 in Figure 
5. The planner then decides if the obstacle can be stridden 
over. If avoiding mode is adopted, ACV will skirt the 
obstacle using appropriate motion commands until this 
obstacle is not in its path to goal. For instance, in the Figure 
5(a), ACV uses LTN command, S3, to skirt the circle 
circumscribed the obstacle until point “d” where the target 
becomes “visible”. There is a SPIN command, S2, before 
LTN to reorient ACV to the tangent direction of the circle 
at point “c”. The generated path can be easily decomposed 
into a sequence of motion commands that are used directly 
to control the vehicle. 

Selection of Path 

The vehicle usually could skirt the obstacle in either 
direction. A rule of thumb is to pick the direction that ACV 
could sooner clear the obstacle and the goal becomes 
visible. Figure 6 shows another. Point B is the goal to reach. 
If the rover takes the right route, the first obstacle can be 
cleared at step S4. On the other side, if the left route is 
taken, the obstacle cannot be cleared until step S6’, which 
takes more turns and appears to be longer. Similar situation 
happens at the second obstacle. It’s obvious that the right 
route is preferred. 

Simplification of Path 

The feasible path generated from MTA could be 
simplified to provide a better path. The simplification 
process tries to combine consecutive turning points to form 
a more direct path. The planner will search consecutive 
turning points, and merges unnecessary turning points if 
the new sub-path is clear of any obstacle. For the example 
shown in Figure 7,, the path L1 is the primitive path based 
on MTA. However, the point b in route L1, could be 
skipped to merge sub-paths ab  and bc  into a shorter 
sub-path ac . Similar case appears in sub-paths cd , de , 
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and ef . The simplified route L2 appears to be a more 
direct path. The result will be the same as the Tangentbug 
algorithm. 

 
Figure 6: The direction determination for the Obstacle 

Mode 

 
Figure 7: The different paths by using MTA 

Path Planning Example 

 Figure 8 shows the example of ACV moving on a 
typical terrain. According the Modified Tangentbug 
Algorithm, we can generate a feasible path that is 
composed of S1’~S9. These subpaths are associated with 
the predefined ACV motion commands. The coordinates of 
each turning pints will become the controlling parameters 
of the motion commands. The motion command list of this 
example is shown in Table 3. ACV usually needs to 
reorient itself before take the next motion command. For 
instance, in subpath S1’, ACV will make a spin to orient 
the vehicle following by a forward motion. The 
corresponding commands are “SPIN” and “FWM”. 
Subpath S4 represents that ACV will skirt the round 
obstacle by a arc motion.  The motion commands are 
“SPIN” and “LTN”. Before striding over the vertical step in 

s6, ACV needs to reorient itself to the normal direction of 
the step. 

 
Figure 8: Path planning of ACV moving 

Table 3: Motion command list of ACV 
Sequence of 

Motion Mode Commands 

S1’ SPIN, FWM 
S3 SPIN, FWM 
S4 SPIN, LTN 
S5 FWM 
S6 SPIN, USTP 
S7 SPIN, FWM 
S8 SPIN, COG 
S9 SPIN, FWM 

5. Integration of Software and Hardware 
Systems 
A prototype ACV is built to verify the design concept 

and the control strategy. The controlling hardware is 
composed of one 8051 chip, wireless control module, and 
eight DC servomotors. Four encoders are installed on the 
motors of steering mechanism and the wheel-arm lifting 
mechanisms for feedback functions. 

We develop a GUI module to integrate the control 
module, motion simulation, and the hardware system.. The 
functions of the interface are explained as follows, and the 
schematic relationship among each module is shown in 
Figure 9.  

a. Build the 3D CAD model in Pro/Engineer. 
b. Define analysis parameters and relations to the 

virtual prototype by Mechanism/Pro and ADAMS 
c. Analyze functionalities of ACV in ADAMS. 
d. Use Matlab/Simulink to simulate the control circuit 

and link with the ADAMS/Controls to study the 
motion dynamics. 
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e. Simulate the motion sequences generated from the 
path planner. 

f. Output the motion commands to the control card to 
drive the hardware.  

g. Get the feedback information from the encoders of 
ACV, and provide correction motion to follow the 
theoretical path. 

If the simulation results confirm the feasibility of the 
motion planning, the operation moves to the hardware 
control system. To improve the performance, we use 
MATLAB/RTW (Real Time Workshop) to generate C code 
of the motor control circuit. The C code compiled by 
MATLAB/Real Time Windows Target module will control 
the hardware circuit. 

6. Summary and Conclusions 
This study introduced a novel design of exploration 

vehicle, and the design procedure of the motion control 
using simulation techniques. To apply the high obstacle 
crossing ability of ACV, a prototype path planner, the 
Modified Tangentbug Algorithm, is described and 
implemented to the virtual vehicle. An integrated design 
environment is established using ADAMS and 
Matlab/Simulink to simulate the vehicle kinematics, the 
interaction between the environment and the vehicle, the 
motion planning algorithm, and the control strategy. ACV 
can successfully move to the target using the planner MTA 
in the predefined virtual environment. The result from the 
virtual prototyping is directly applied to the control of the 
hardware. In the future, we will continue to improve the 
path planning algorithm, and install GPS (Global 
Positioning System) for vehicle positioning. A feedback 
control scheme will also be investigated since slipping is 
inevitable in the real world. Finally, a CCD vision system 
will be put on the vehicle for environment recognition. 
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Figure 9: Integration chart of the software and hardware systems 


