
Presented at the 7th International Conference on Automation Technology, Sept. 12-14, 2003, Chia-Yi, Taiwan

* Corresponding Author: jcyu@ccms.nkfust.edu.tw

Design and Motion Simulation of the Autonomous Exploration Vehicle

Jyh-Cheng YU*

Department of Mechanical and Automation Engineering
National Kaohsiung First University of Science and Technology

Johnson W.C. LIAO, Ming-Yang LI, and Shian-Hung LI

Dep. of Mechanical Engineering
National Taiwan University of Science and Technology

ABSTRACT
This paper describes a novel design of exploration

vehicle, ACV, and the scheme of motion control and path
planning using the virtual prototyping system. ACV
possesses the high local mobility and obstacle crossing
ability due to the design of four independent drives and the
active rock arms. An integrated design environment is
established using ADAMS and Matlab/Simulink to
simulate the vehicle kinematics, the interaction between the
environment and the vehicle, the motion planning
algorithm, the dynamic behavior, and the control strategy.
A prototype path planner, the Modified Tangentbug
Algorithm (MTA), is described and implemented to the
navigation of the virtual vehicle. MTA generates a feasible
path to avoid blocking obstacles, and to stride over
passable obstacles in a known environment. The generated
path is then decomposed into a sequence of motion
commands written in ADAMS macros to control the
vehicle. At last, a prototype ACV is described, and the
interface structure between the simulation platform and the
prototype is presented.

Keywords: Terrain vehicle, Virtual prototype, ADAMS,
Path planning

1. Inroduction
In some cases, such as hazard environments and

extraterrestrial exploration, where a manned task is
prohibited, an autonomous unmanned rover that can adapt
to the various severe terrain is an alternative for the
investigation purpose. There are many studies done about
various candidates regarding the exploration rover. Related
configuration designs for the wheeled roving vehicles are
the Jet Propulsion Laboratory's CARD (Computer-Aided
Remote Driving) rover [9], WAAV (Wheeled Actively
Articulated Vehicle) [4][8], and the Rock 7 [6]. The JPL
CARD design is a six-wheeled rover that is composed of

three modules and two passive articulations. It is a direct
derivative of a design for a lunar rover [10]. WAAV adopts
a similar configuration with six independently actuated
driving wheels and two active articulations with three
degrees of freedom. The actively coordinated wheeled
vehicles [7] have shown to possess considerable
advantages in providing these capabilities as compared
with a passive vehicle system. With the aid of the active
articulation design, obstacle-crossing ability has been
greatly enhanced. WAAV can negotiate uneven terrain
including vertical steps and horizontal gaps.

This study will introduce a novel design of
exploration vehicle, Adaptive Configuration Vehicle (ACV),
and present the virtual prototype procedure to integrate the
kinematics analysis, the path planning, the motion control,
and the simulation of terrain negotiation, using the dynamic
analysis system, ADAMS. A physical prototype of ACV is
thus built to verify the design.

2. Adaptive Configuration Vehicle
ACV [3] possesses the similar obstacle crossing

capability as WAAV but using a simpler four-wheeled
design. ACV is designed to travel on the artificial
environments where the capabilities of avoiding blocking
obstacles and crossing regular obstacles, such as steps and
gaps are required. We assume that the working
environment of the vehicle is known, and neglect the vision
module at the current study.

ACV is composed of a body module and four
independently actuating wheels attached to two active rock
arms as shown in Figure 1. The batteries and the control
module are stored on the body module. There is another
passive wheel beneath the body module for balance
purpose. There are eight actuators in the vehicle. In
addition to four driving wheels, two motors control the
angle of the front wheel arms for steering purpose. The
front wheel arm design enables ACV to spin on the middle

 2

of the rear wheel pair. The other two motors lift the rock
arm when striding over obstacles. ACV can adapt the
vehicle configuration to uneven terrains and cross some
obstacles, such as vertical steps and horizontal gaps

Figure 1: The structure design of ACV

3. Motion Simulation
This study applies ADAMS as a virtual design

platform to integrate the kinematics simulation, the
interaction with environment, the control strategy, and the
path planning module. ADAMS is based on multi-body
theories that are suitable to analyze complex motions [12].
MATLAB/Simulink [13] is used to design the motion
control kernel of ACV. These tools assist efficiently in
evaluating and analyzing our concept before the
manufacturing of the prototype.

The 3D model of ACV is built in ProE and imported
into ADAMS by the Mech/Pro interface module. The
Mech/Pro Interface can transfer not only the complete
geometries, but also the definitions of mass properties,
joints, and motions. The environment of the vehicle is
constructed using ADAMS as well. We then define the
relationships between the tires and the environment using
the TIRE STATEMENT. Besides, we build several road
types to investigate the negotiation capability of ACV when
traveling on different terrains.

3.1. Motion Commands

The motion control of ACV is predefined into eight
motion commands written as the macros of ADAMS. The
summary of the motion commands is listed in Table 1.
Each command is associated with the control parameters
listed in Table 1, and a corresponding time sequence of the
actuators, such as Figure 2. FWM and BWM are motion
commands for straight move. SPIN pivots ACV for a given
angle on the middle of the rear wheel pair. RTN and LTN
are commands for turning ACV round a given center. There
are three more motion commands for crossing the obstacles
with the help of two active rock arms. USTEP and DSTEP

will command ACV to surmount and climb down a
negotiable high step. CRG simulates the motion to go
across a wide gap (Table 2). To facilitate the execution of
the motion macros, we design a customized GUI interface.
This GUI interface serves as the integrated control panel of
ACV for the path planning, the actuator control, and the
motion simulation.

By using the motion simulation of ADAMS, we can
determine the feasibility of the control logic. When the
results show any instability at specific conditions,
compensators can be added into the system to improve the
vehicle stability. For the design of compensators, we define
the inputs and outputs of the control system by
ADAMS/Controls interface linked with
MATLAB/Simulink to integrate the mechanism and control
system.

Table 1: Motion commands of ACV
Motion

commands
Motion

Discription
Motion

Parameters
FWM Straight forward moving Speed, Distance
BWM Straight backward moving Speed, Distance
USTP Climb up a step Height
DSTP Climb down a step Height
CRG Stride over the gap Width

RTN Right turn by arc Angular displacement,
Center

LTN Left turn by arc Angular displacement,
Center

SPIN Spinning on the middle of the
rear wheel pair

Direction, Spin angle

Table 2: The illustrations of the motion commands of ACV
Motion

commands 1st snapshot 2nd snapshot 3rd snapshot

SPIN

LTN

USTP

CRG

3.2. Simulation of Control Module

MATLAB/Simulink receives the information of plant
transferred from ADAMS/Controls, and implements the
design of controller. For DC servomotors, we can control
angular speed and position. The PID controller is used to
control the output error. The control parameters of the
corrected movement are then passed to ADAMS.

 3

The ACV has a autonomous path planning capability.
Given a destination in a known environment, the path
planning module can generate a feasible path and converts
the path into a series of motion commands as shown in
Figure 3. The motion commands then pass to the control
kernel to implement the position control. Detailed strategy
of path planning will be discussed in the next section.

FR

FL

BR

BL

AR

AL Time(sec)0.5 3.5
4 7

7.3 9.3
9.5 11.3

11.5 12.6
13 14.8

15 18
21

Figure 2: The time-sequence diagram of the motors for
climbing up a step (USTP)

Figure 3: ACV travels in the virtual environment

4. Strategies of Path Planning

4.1. Relevant Algorithms

To make unmanned missions possible, the
exploration vehicle should be able to generate the moving
path to a given destination. Relevant work can be divided
into three major categories: “classical “ path planners,
heuristic planners, and sensor-based motion planners.
“Classical” planners assume full knowledge of the
environment. Heuristic planners are based on a set of
“behaviors”, and can be applied to unknown
environment[11]. However, heuristic planners do not
guarantee to reach the goal. Sensor-based motion planners
rely solely on the rover’s sensor and yet guarantee
completeness.

Kamon et al [5] proposed the Tangentbug algorithm
that is a sensor-based motion planner. The Tangentbug
algorithm uses range data from an omnidirectional camera,
Local Tangent Graph (LTG), to choose the local optimal
direction while moving towards the target. If a obstacle is

in the path to target, a tangent line from the current robot
position to the obstacle will be the first move following by
a boundary following until the target is not blocked by the
obstacle. LTG iterates until the target is reached.

The Wedgebug algorithm [14] improves the
shortcomings of Tangentbug. It uses a stereo pair of
cameras mounted on a pan-able mast. Instead of an
omnidirectional view at every step, the planner scans only
specific areas to avoid unnecessary sensor scans and rover
motion. The rover is modeled as a point robot in a 2D
binary environment. Obstacle boundaries block sensing as
well as motion. The planner consists of two modes:
motion-to-goal and boundary-following. Its extended
version, called the Roverbug Algorithm, has been
implemented on the JPL’s Rocky7 prototype microrover
[11]. Roverbug calculates the obstacles’ silhouettes to relax
the assumption of a point robot rover. The basic operation
of Roverbug Algorithm includes calculating obstacles’
convex hulls, looking in the appropriate direction, and
increasingly building and executing each subpath until the
goal is reached.

Cunha et al. [1] and Yamamoto et al. [2] are two
classical path planners that use cell decomposition
technologies to get the feasible and the optimal trajectories
toward the goal. The environment is assumed known and
obstacles are transformed to circumscribed polygons.
Feasible trajectories are consisted of lines, arcs, and splines.
Traveling time is used as the objective to determine the
best path.

4.2. Modified Tangentbug Algorithm (MTA)

The above algorithms only consider the strategy to
avoid obstacles, but neglect the situations where passing
through certain obstacles is possible if the rover has the
obstacle-crossing ability like ACV. Besides, path planners
should include controlling cost in the selection of the
optimal path. The control of rovers to follow a path
consisted of splines and irregular contours will be very
difficult. The theoretical optimal path may not be suitable
for practical purpose. Plus, slippery between wheels and
loose terrains will make complex paths unrealistic. A
simple path consisted of lines and arcs will be much easier
to realize.

This study modifies the Roverbug Algorithm to
address the path planning needs of ACV. The environment
is assumed known although MTA can be easily adapted to
the range data obtained from the rover sensors. A morphing
technique is first applied to transform the environment to a
2D map. The path planner iterates between two motion
modes, the To-Goal Mode and the Obstacle Mode, until the
target is reached. The schematic flowchart of MTA is
shown in Figure 4.

 4

Obstacle Modes

Climbing steps Crossing gaps

Y

Obstacles in Path

To-Goal Mode

N

Y

Reach of goal

START

END

Crossing ObstaclesAvoiding Obstacles

Skirting Obstacle
by Arc

Skirting Obstacle
by Polyline

N

Y

Figure 4: Flowchart of Path planning

 (a) Skirting by arc (b) Skirting by polyline

Figure 5: Two different paths for the two morphing
geometry of the obstacle

Morphing of Obstacle

The obstacles are first enlarged to include the
required clearance between the pivot of ACV and the
obstacles. Blocking obstacles are simplified as
circumscribed polygons and circles, and steps and gaps are
simplified as polyline. The environment is thus represented
as a two dimensional map for path planning. There are
various shapes for the obstacles in the real environment, so
the morphing of obstacles is very helpful to simplify the
complex circumstances. Two basic shapes of obstacle,
circles and polygons, are considered in the morphing
process. These two shapes fit the basic motion commands
of ACV: the straight moving, spinning, and the arc turning.
Detailed morphing procedure is awaited future
investigation. For the example in Figure 5, the shape of the
obstacle can be morphed into a circle or a rectangle to

reduce the number of turns for ACV. A shorter path doesn’t
guarantee a shorter controlling time. The final choice
should consider the actual performance of motors and
controllers.

Basic Planning Mechanism of Motion Modes

The path planner has two basic motion modes:
To-Goal, and Obstacle Modes. There are two sub-modes of
the Obstacle Modes. One is to avoid the obstacles by
skirting the morphing boundary of the obstacle. Depending
on the type of obstacle, the planner will use arc or polyline
motion to skirt the obstacle. The other sub-mode is to stride
over the obstacles if they can be crossed, such as steps and
gaps. In such a case, ACV will approach these types of
obstacle vertically to reduce the crossing distance.

The path planner will use the two dimensional map
from the morphing process to design the path. ACV starts
from a direct move toward the goal until reaching the
boundary of a morphing obstacle, such as the S1 in Figure
5. The planner then decides if the obstacle can be stridden
over. If avoiding mode is adopted, ACV will skirt the
obstacle using appropriate motion commands until this
obstacle is not in its path to goal. For instance, in the Figure
5(a), ACV uses LTN command, S3, to skirt the circle
circumscribed the obstacle until point “d” where the target
becomes “visible”. There is a SPIN command, S2, before
LTN to reorient ACV to the tangent direction of the circle
at point “c”. The generated path can be easily decomposed
into a sequence of motion commands that are used directly
to control the vehicle.

Selection of Path

The vehicle usually could skirt the obstacle in either
direction. A rule of thumb is to pick the direction that ACV
could sooner clear the obstacle and the goal becomes
visible. Figure 6 shows another. Point B is the goal to reach.
If the rover takes the right route, the first obstacle can be
cleared at step S4. On the other side, if the left route is
taken, the obstacle cannot be cleared until step S6’, which
takes more turns and appears to be longer. Similar situation
happens at the second obstacle. It’s obvious that the right
route is preferred.

Simplification of Path

The feasible path generated from MTA could be
simplified to provide a better path. The simplification
process tries to combine consecutive turning points to form
a more direct path. The planner will search consecutive
turning points, and merges unnecessary turning points if
the new sub-path is clear of any obstacle. For the example
shown in Figure 7,, the path L1 is the primitive path based
on MTA. However, the point b in route L1, could be
skipped to merge sub-paths ab and bc into a shorter
sub-path ac . Similar case appears in sub-paths cd , de ,

 5

and ef . The simplified route L2 appears to be a more
direct path. The result will be the same as the Tangentbug
algorithm.

Figure 6: The direction determination for the Obstacle

Mode

Figure 7: The different paths by using MTA

Path Planning Example

 Figure 8 shows the example of ACV moving on a
typical terrain. According the Modified Tangentbug
Algorithm, we can generate a feasible path that is
composed of S1’~S9. These subpaths are associated with
the predefined ACV motion commands. The coordinates of
each turning pints will become the controlling parameters
of the motion commands. The motion command list of this
example is shown in Table 3. ACV usually needs to
reorient itself before take the next motion command. For
instance, in subpath S1’, ACV will make a spin to orient
the vehicle following by a forward motion. The
corresponding commands are “SPIN” and “FWM”.
Subpath S4 represents that ACV will skirt the round
obstacle by a arc motion. The motion commands are
“SPIN” and “LTN”. Before striding over the vertical step in

s6, ACV needs to reorient itself to the normal direction of
the step.

Figure 8: Path planning of ACV moving

Table 3: Motion command list of ACV
Sequence of

Motion Mode Commands

S1’ SPIN, FWM
S3 SPIN, FWM
S4 SPIN, LTN
S5 FWM
S6 SPIN, USTP
S7 SPIN, FWM
S8 SPIN, COG
S9 SPIN, FWM

5. Integration of Software and Hardware
Systems
A prototype ACV is built to verify the design concept

and the control strategy. The controlling hardware is
composed of one 8051 chip, wireless control module, and
eight DC servomotors. Four encoders are installed on the
motors of steering mechanism and the wheel-arm lifting
mechanisms for feedback functions.

We develop a GUI module to integrate the control
module, motion simulation, and the hardware system.. The
functions of the interface are explained as follows, and the
schematic relationship among each module is shown in
Figure 9.

a. Build the 3D CAD model in Pro/Engineer.
b. Define analysis parameters and relations to the

virtual prototype by Mechanism/Pro and ADAMS
c. Analyze functionalities of ACV in ADAMS.
d. Use Matlab/Simulink to simulate the control circuit

and link with the ADAMS/Controls to study the
motion dynamics.

 6

e. Simulate the motion sequences generated from the
path planner.

f. Output the motion commands to the control card to
drive the hardware.

g. Get the feedback information from the encoders of
ACV, and provide correction motion to follow the
theoretical path.

If the simulation results confirm the feasibility of the
motion planning, the operation moves to the hardware
control system. To improve the performance, we use
MATLAB/RTW (Real Time Workshop) to generate C code
of the motor control circuit. The C code compiled by
MATLAB/Real Time Windows Target module will control
the hardware circuit.

6. Summary and Conclusions
This study introduced a novel design of exploration

vehicle, and the design procedure of the motion control
using simulation techniques. To apply the high obstacle
crossing ability of ACV, a prototype path planner, the
Modified Tangentbug Algorithm, is described and
implemented to the virtual vehicle. An integrated design
environment is established using ADAMS and
Matlab/Simulink to simulate the vehicle kinematics, the
interaction between the environment and the vehicle, the
motion planning algorithm, and the control strategy. ACV
can successfully move to the target using the planner MTA
in the predefined virtual environment. The result from the
virtual prototyping is directly applied to the control of the
hardware. In the future, we will continue to improve the
path planning algorithm, and install GPS (Global
Positioning System) for vehicle positioning. A feedback
control scheme will also be investigated since slipping is
inevitable in the real world. Finally, a CCD vision system
will be put on the vehicle for environment recognition.

7. Acknowledgement
This study is partially supported by the National

Science Council in Taiwan under Contract No. NSC
91-2213-E-008 –020.

8. References
[1] S. R. Cunha, A. C. de Matos, F. L. Pereira, (1993) “An Automatic

Path Planning System for Autonomous Robotic Vehicles”, Proc.
1993 IEEE Int. Conf. On Robotics & Automation, pp.1442-1447.

[2] M. Yamamotom M. Iwamura, A.Mohri, (1999) “Quasi-Time –
Optimal Motion Planning of Mobile Platforms in the Presence of
Obstacles”, Proc. 1999 IEEE Int. Conf. On Robotics & Automation,
Detroit, MI., USA, pp. 2958 – 2963.

[3] Chih-Chiang Lee (2000) Kinematics simulation and design of
Adaptive Configuration Vehicle for 0ff-road applications, Master
Thesis, National Taiwan University of Science and Technology,
Taipei, Taiwan.

[4] J. Yu and K. J. Waldron, (1991) “Design of Wheeled Actively
Articulated Vehicle”, Proc. Applied Mechanisms and Robots
Conference, Cincinnati, OH., USA, Nov. 5, 1991

[5] I. Kamon, E. Rimon, and E. Rivlin, (1996) “A New Range-Sensor
Based Globally Convergent Navigation Algorithm for Mobile
Robots," Proc. 1996 IEEE Conf. Robotics Automat.

[6] R. Volpe, J. Balaram, T. Ohm, and R. Ivlev, (1996) “The Rocky 7
Mars Rover Prototype”, Proc. of IEEE/RSJ Conf. Intelligent Robots
and Sys..

[7] K. Waldron （1995） ,”Terrain Adaptive Vehicles”, Journal of
Mechanical Design, Vol. 117B, June, pp. 107-112.

[8] V. Kumar and K.J. Waldron (1989), “Actively coordinated vehicle
system” Journal of Mechanisms, Transmissions, and Automation in
Design, Vol. 111, n2, pp. 223-231.

[9] G. Klein, K.J. Waldron, and B. Cooper, (1986) “Current Status of
Mission/System Design for a Mars Rover”, Unmanned Systems,
Volume 5, No. 1, pp 28~39, Summer 1986.

[10] M.G. Bekker, (1969) Introduction to terrain vehicle system,
University of Michigan Press.

[11] S.L. Laubach, J.W. Burdick, and L.H. Matthies（1998） , “An
Autonomous Path Planner Implemented on the Rocky 7 Prototype
Microrover”, Proc. IEEE International Conference on robotics &
Automation, May, pp. 292-297

[12] ADAMS R12 user manuals, Mechanical Dynamics Inc., 2001
[13] Matlab/Simulink user guide, Mathworks Inc., 2001
[14] S.L. Laubach and J.W. Burdick （ 1999 ） , “An Autonomous

Sensor-Based Path-Planner for Planetary Microrovers”, Proc. IEEE
International Conference on Robotics & Automation.

ADAMS

Motion Simulation

Pro/E

3D Model Design Control Center

MATLAB

controls simulation
(ADAMS/Controls)

Power SystemACV control card

Path Planning
Algorithm

Mech/Pro

Figure 9: Integration chart of the software and hardware systems

