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Abstract 

Central bank intervention may force the foreign exchange rate to converge to the target 

zone of the exchange rate, which is periodically reset by the central bank. Therefore, a 

mean-reversion effect on the exchange rate is observed for foreign exchange markets. An 

international intertemporal investor with a recursive preference who faces mean-reverting 

time-varying investment opportunities can consider both myopic demand and intertemporal 

hedging demand into her asset allocation problem. In this paper we formally evaluate and 

quantify the mean-reversion effect of exchange rates into an international intertemporal model 

in order to find the optimal asset allocation strategies and show that the optimal asset 

allocations can be divided into a myopic component and intertemporal component. We use an 

asymptotic approximation by taking a first-order expansion around the unit elasticity of 

intertemporal substitution to derive the exact solution to our optimal problem. Our 

approximation shows that the intertermporal hedging component first rises then falls with the 

coefficient of risk aversion. In addition, the magnitude of intertemporal hedging demand 

increases with a decrease in the mean-reverting intensity on the exchange rate and the elasticity 

of intertemporal substitution.  
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1. Introduction 

As the foreign exchange rate deviates from the target zone of the exchange rate, the central bank 

may long or short the foreign currency in order to keep the foreign exchange rate stable and steer it 

into the expected zone of exchange rate of that foreign currency. Central bank intervention may 

force the exchange rate to be mean-reverting in the target zone of the exchange rate, while at the 

same time, the central bank may periodically adjust the target zone of the exchange rate since it 

dynamically changes over time, which results in a time-varying mean-reverting exchange rate 

environment. Time-varying exchange rates imply that investment opportunities for international 

investors are time dependent other than time independent. Huizinga (1987), Abuaf and Jorion 

(1990), Jorion and Sweeney (1996), and Taylor, Peel and Sarno (2001) have found significant 

evidence that real exchange rates are mean-reverting, especially at long horizons. Due to 

deregulation, investors face a globally diversifiable investment universe where domestic and 

foreign securities are both considered into their international intertemporal asset allocation problem. 

Merton (1971, 1973) assumed that asset returns are stochastic with constant parameters when only 

considering the domestic market, however, the importance of long-horizon predictability in an 

international context has been stressed earlier by Culter, Poterba, and Summers (1989). There is 

now considerable evidence that excess returns in the international equity markets or in the foreign 

exchange markets are predictable. International intertemporal asset pricing models with constant 

exchange rate parameters may lead investors to an incorrect allocation of investment, considering 

that a mean-reverting phenomenon of exchange rates may overcome the constant parameter 

problems in the dynamic investment environments.  

In a log preference shown by Zapatero (1995), where investors act myopically, the 

intertemporal model is tractable and reduced to the single-period model. Since the elasticity of 

intertemporal substitution and the relative risk aversion have very different aspects on optimal 

consumption and portfolio choice (Campbell and Viceira, 1999, Campbell, Chacko, Rodriguez and 

Viceira, 2004, and Chacko and Viceira, 2005), a continuous-time recursive preference shown by 
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Duffie and Epstein (1992b) can be used to distinguish the relative risk aversion from the elasticity 

of intertemporal substitution in consumption. Thus, this paper develops a continuous-time 

recursive preference international intertemporal model in order to clarify both the risk aversion 

effect and intertemporal substitution effect on the optimal asset allocation decisions. 

Facing a mean-reverting environment of an exchange rate, two long-lived representative 

agents with recursive preference are considered in both the domestic and foreign country. Each 

representative agent of the domestic country and foreign country maximizes her utility which is 

defined over consumption rather than wealth, and chooses an optimal allocation on international 

securities as well as consumption from her wealth. However, an exact closed-form solution does 

not appear possible under the endogeneity of consumption in our model.  

Several studies solve the problem by some approximation methods. Liu (2001) set up a square 

root short rate diffusion process and stochastic volatility on stock returns to show that Merton’s 

optimal dynamic portfolio selection problem expressed by a non-linear partial differential equation 

can be reduced to the system of ordinary differential equations. Campbell and Viceira (2001) use 

log linear approximation to characterize the portfolio demand under a stochastic opportunity set in 

a discrete time model; Campbell, Chacko, Rodriguez and Viceira (2004) and Chacko and Viceira 

(2005) derive the optimal portfolio with stochastic opportunity sets by an approximate analytical 

solution method and find a solution around a particular point in the state space－the unconditional 

mean of the log consumption-wealth ratio. In contrast to them, we derive the exact solution by a 

more intuitive perturbation method of approximation around a particular point in the preference 

space. 

In order to make the analysis herein more tractable, financial markets are assumed to be fully 

integrated and there are no constraints on international capital flows. This goes along with a certain 

number of general assumptions of market perfection, including:  capital markets are always in 

equilibrium; assets can be sold short; there exists a bond market for borrowing and lending at the 

same rate; and trading in assets and currencies takes place continuously in time. Some aspects, 
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such as human capital and inflation, are important for international investment, but are left out 

since they might blur the focus of this paper. 

Our model formally evaluates and quantifies the recursive preference into an international 

intertemporal asset allocation problem under mean-reverting exchange rates. More specifically, our 

contributions consist of the following. First, some recent studies all present their dynamic 

portfolios under the time-varying opportunities sets. Bekaert and Hodrick (1992) investigate the 

equity and foreign exchange excess returns with a vector autoregressive process. Campbell and 

Viceira (1999) model the time-varying equity premium using a discrete-time model and present an 

approximate analytical solution to analyze the impact of a predictable variation in the stock return 

on an intertemporal optimal portfolio choice and consumption. Campbell, Chacko, Rodriguez and 

Viceira (2004) find a continuous-time representation of Campbell and Viceira (1999) and exhibit 

the same properties as its discrete-time counterpart. All the papers mentioned above, together with 

Brennan, Schwartz and Lagnado (1997), Liu (2001), and Wachter (2002) are limited in national 

investment decisions other than international asset allocations, and therefore we extend our model 

from a national to an international setting.  

Second, although Zapatero (1995) already considers international intertemporal asset 

allocation problems, the log utility setting has induced Zapatero (1995)’s model to reduce to a 

single period international asset allocation model. Zapatero’s model explains the current myopic 

investment of investors only, while leaving unexplained the intertemporal hedging demand of 

investors. By observing the limitation of Zapatero, we present a continuous-time recursive 

preference model which allows us not only to analyze the effect of risk aversion on investors’ asset 

allocation decision, but also to realize the intertemporal substitution effect in consumption. Our 

model accounts for myopic hedging as well as intertemporal hedging strategies in the spirit of the 

model tested by Dumas and Solnik (1992) and Harvey, Solnik and Zhou (1992). Furthermore, our 

model allows for differences in beliefs across the representative agents expressed by the 

time-varying investment opportunities sets. This generalization allows us to analyze the 
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comparative analysis on the parameters of the optimal allocations. 

Third, under the endogeneity of consumption in an intertemporal asset allocation model, an 

explicit closed-form solution in the general case does not appear possible. In the situation where an 

investor considers intermediate consumption, the approximation method provided by Campbell and 

Viceira (2001), Campbell, Chacko, Rodriguez, and Viceira (2004), and Chacko and Viceira (2005) 

- through the approximation around the unconditional mean of the log consumption-wealth ratio - 

is accurate only in the situation whereby the log consumption-wealth ratio is not too variable 

around its unconditional mean. Therefore, we derive the explicit solution by a more intuitive 

perturbation method of approximation around a particular point in the preference space. Here, the 

intertemporal elasticity equal to 1.  

Fourth, we find some numerical results which are shown as follows. (1) The magnitude of 

intertemporal hedging demand first rises and then falls with an increase in the coefficient of risk 

aversion. Accordingly, when the investor becomes extremely conservative, her optimal 

intertemporal hedging demand on the foreign risky stock expressed in domestic currency will 

decrease to zero. (2) On determining the optimal weight in the intertemporal hedging demand, the 

relative risk aversion is more sensitive than the elasticity of intertemporal substitution, while the 

volatility of intertemporal hedging demand shows a flattening trend with an increase in the 

elasticity of intertemporal substitution. (3) The magnitude of intertemporal hedging demand 

decreases under the increasing intensity of mean reversion, however, the mean reversion sensitivity 

on intertemporal hedging demand increases as risk aversion decreases.  

The paper is organized as follows. Section 2 describes the international financial economy 

and the model. Section 3 develops the optimal dynamic asset allocation strategies for long-horizon 

investors in the time-varying international environment. Section 4 presents a numerical exercise on 

general international intertemporal asset allocation problems. Finally, section 5 presents some 

conclusions. 

2. An international financial economy 



We consider a financial economy consisting of two countries, D and F (representing domestic and 

foreign), each populated by a representative agent. Financial markets are assumed to be fully 

integrated, and trades take place between investors through a foreign exchange rate following the 

setting of Solnik (1974), Stulz (1981), Adler and Dumas (1983), and Zapatero (1995). 

2.1 Rates of return dynamics and exchange rate structure 

An investor in each country faces two domestic assets, a riskless bond and a risky stock, and two 

foreign assets. It is assumed that expectations in real terms are homogeneous across both investors 

(Solnik, 1974). Letting  denote the price of the domestic risky asset at time t, the return 

dynamics are given by: 

D
tS

DDDIDIDD
t

D
t dZsdZsdt

S
dS

++= μ  

,       dZσD′+≡ dtDμ                                                  (1) 

where D
t

D
t

S
dS  is the instantaneous rate of return on the risky asset of country D; Dμ  is the 

instantaneous expected rate of return on the stock; [ ]0  DDDI ss≡′Dσ  represents the diffusion where 

 and  are volatilities respectively due to the international factor and the idiosyncratic 

factor in home country D; and 

DIs DDs

[ ]FDI dZdZdZ   ≡′Zd  is a vector of Wiener processes. The second 

asset that the representative agent faces is the riskless bond. Here,  denotes the price of the 

bond at time t, and its stochastic process is given by: 

tB

dtr
B

dB D
D
t

D
t = ,                                                        (2) 

where Dr  is the interest rate in country D.  

The financial market of country F are similar to Equations (1) and (2), with parameters 

FFFIF ss ,,μ ,  , and [ ]FFFIF ss 0 σ ≡′ Fr . The dynamics of the risky technology depend only on 

 and . We assume, following the setting on Zapatero (1995), that there are a total of three 

factors to explain the dynamics of the financial economy. One is common across countries 

IZ FZ
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(denoted by ) and the other two are idiosyncratic to each country (denoted by  and  

for countries D and F, respectively). Therefore, domestic financial markets are incomplete in each 

country.  

IZ DZ FZ

Trade across countries takes place through an exchange rate. As we know, central banks in 

most countries may trade foreign currencies frequently in order to stabilize foreign exchange rates. 

When the foreign exchange rate exceeds the ceiling or is below the floor of the target exchange rate 

zone, a central bank may short or long the foreign currency in order to push the foreign exchange 

rate back into the expected target zone of that foreign currency. Central bank intervention causes a 

mean-reverting phenomenon on foreign exchange rates, and when facing a dynamic environment, 

the central bank may periodically reset the target zone of the exchange rates which will induce the 

foreign exchange rates to be time-varying mean-reverted. Therefore, investment opportunities 

faced by international investors are in fact time dependent other than time independent in a 

time-varying exchange rate environment. Indeed, Huizinga (1987), Abuaf and Jorion (1990), Jorion 

and Sweeney (1996), and Taylor, Peel and Sarno (2001) find that real exchange rates are 

significantly mean-reverting in the long term, especially for long horizons.  

The percentage rate of changes in the exchange rate is assumed to be driven by three 

independent Brownian processes, , and , with a mean-reverting drift. The dynamics of 

the rate of exchange rate are given as follows:  

DI ZZ , FZ

FeFDeDIeIet
t

t dZsdZsdZsdt
e
de

+++= μ  

,dZσ ee′+≡ dtetμ                                                               (3) 

where 
ee

Zddtd etet μμσμθκμ ~)  ( +−= . Here, ),( HL θθθ∈  is the long-term mean of the 

expected changes in the exchange rate, which can be interpreted as the target zone of the exchange 

rate. The target zone of the exchange rate is set by the central bank in order to maintain the foreign 

currency value within the central bank’s exchange rate policy. When Hte θ> , the current 

exchange rate exceeds the upper bound of the target zone, and foreign currency will have to 
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depreciate in value, which results in a decline in next exchange rate. On the other hand, if Lte θ< , 

then the foreign currency will have to appreciate in value.  

While κ  is the mean reversion intensity of the expected rate of changes in the exchange rate, 

a higher κ  indicates a higher reversion speed of the next exchange rate move toward the target 

zone. Therefore, the foreign currency market is more volatile than ever, and the persistence of the 

foreign exchange rate is thus lower. By observing the mean-reverting phenomenon in foreign 

exchange rates, if Hte θ> , then  will decrease, and 1+te κ  should be positive in order to realize 

a negative payoff in the next period. If Lte θ< , then  will increase, and 1+te κ  should be 

positive in order to realize a positive payoff in the next period. Therefore, κ  is positive no matter 

if the foreign exchange rate is higher or lower than the target zone.  

The shocks to the expected rate of change in the exchange rate etdμ  and 
t

t

e
de  are given by 

+++= FFDDII dZdZdZZd
e

ρρρμ
~

e
dZFDI μρρρ )1( 222 −−− ( )

e
dZμρρdZρ ′−+′≡ 1  and  

, respectively. The three independent Brownian motion processes which derive the 

exchange rate can be used to explain all the uncertainty in the financial economy. In addition, the 

expected rate of change in the exchange rate varies over time with a mean-reverting process. Note 

that the instantaneous correlation vector between 

dZdZe =

tt ede  and etdμ  is ]    [ ′≡ FDI ρρρρ , and 

Iρ , Dρ , and Fρ  are instantaneous correlations between the time-varying expected rate of 

change in the exchange rate and volatilities due to the common international factor, and the 

idiosyncratic factors in country D and country F, respectively.  

2.2 Preference structure and budget equations dynamics  

In order to capture the intertemporal hedging demand on the asset allocation problem, the recursive 

utility, described by Campbell (1993), Campbell and Viceira (1999, 2002), Campbell, Chacko, 

Rodriguez and Viceira (2004), and Chacko and Viceira (2005), is used to describe investors’ 

preferences. Epstein and Zin (1989, 1991) first derive a parameterization of recursive utility in a 
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discrete-time setting, while Duffie and Epstein (1992a, 1992b) offer a continuous-time setting. The 

recursive utility function allows us to separates the relative risk aversion coefficient from the 

elasticity of the intertemporal substitution in consumption, which means it separates the investor’s 

risk attitude on optimal consumption and the portfolio from the consuming attitude on the single 

consumption good. For our representative agents in countries D and F, the recursive preference 

over consumption is given by: 

] ),([  
 τττ dJCfEJ t

ii
t

i ∫= ∞   [ ]FDi ,∈ ,                                     (4) 

where  is a normalized aggregator of investors’ current consumption ( ) and utility 

that take the following form:  
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Here,  is the coefficient of relative risk aversion,  is the rate of time preference, 

and  is the elasticity of intertemporal substitution. They are all larger than zero. When the 

elasticity of the intertemporal substitution is the reciprocal of risk aversion , the 

recursive utility function reduces to the standard, additive power utility function. Therefore, the 

power utility function is just a special case of the recursive utility function.  

0>iγ 0>iβ

0>iϕ

( ) 1−
= ii γϕ

The exchange rate dynamics together with the asset return dynamics yield a return process of 

a foreign asset expressed in domestic currency. Since the return of a foreign asset expressed in 

domestic currency depend not only on the change in the price of the foreign asset, but also on the 

change in the exchange rate, the return of a foreign asset expressed in domestic currency is 

therefore different from the return of that foreign asset expressed in foreign currency. When 

investors have access to the international market, foreign assets become available to them, and the 

actual returns the international investors face are different from those of the domestic investors, 

because the exchange rate changes over time.  

By Ito’s Lemma, the instantaneous return for the representative investor of country D in an 
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investment on a stock and bond in country F is respectively:  

)dZσσσσ eFeF ′+′+′++= ()()( dt
Se
Sed

etFF
tt
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tt μμ                                 (6) 
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F
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F
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Similarly, for the representative agent of country F, the instantaneous return on investing in a risky 

stock and local riskless bond of country D is respectively: 
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etD
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D
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D
t μ()( .                                    (9) 

The investor’s objective is to maximize the expected lifetime utility described above, subject 

to the following intertemporal budget constraint. The intertemporal budget constraint for the 

representative agent in country D is: 
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For the representative agent in country F, the intertemporal budget constraint is: 
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where ,  represents the investor’s total wealth in countries D and F. Following 

Solnik (1974), investors of both countries are assumed to consume a single domestic consumption 

good in each time t. Moreover, , , and , where 

i
tW [ FDi ,∈ ]

iD
tn iF

tn iB
tn [ ]FDi ,∈ , are the fractions of 

investors’ wealth allocated to financial assets:  the stock of country D, the stock of country F, and 

the local riskless bond of the foreign country, respectively.  
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3. The optimal dynamic asset allocation strategies 

3.1 The optimality and the exact portfolio choice for the special case: intertemporal substitution of 

consumption with unit elasticity 

Investors maximize the expected lifetime utility expressed by the value functions of the problem 

( ). In fact, the principle of optimality leads to the following Bellman equations of the utility 

function for the representative investors of country D and country F which satisfy: 
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are used for higher derivatives. 

In order to derive the optimal weights on the consumption good and financial assets, the 

first-order conditions on the above Bellman equations are presented as: 
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Currently, the first-order conditions for our problem are not explicit solutions unless we know the 

complicated form of the indirect utility function. We conjecture a solution of the indirect utility 
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function as:  
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However, the explicit solutions on the first-order conditions still cannot be found unless we know 

the solution of the direct utility function. Therefore, under unit elasticity of an intertemporal 

substitution of consumption , we guess that the ordinary differential equation has a solution 

of the functional form:  

1=iϕ
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Using our conjectures on the functional form of the indirect utility function (Equations (14) 

and (15)), we then substitute the first-order conditions (Equations (12) and (13)) back into the 

Bellman equation (Equation (11)) and rearrange to get: 

                 

[ ]FDiσQQQQQ

σQQQQ

σrQQ

rrQQ

rQQQ

e

e

e

i
et

i
et

iii
i

iiii
et

i
et

iii
i

iiii
et

ii
i

iiii
ietiet

ii

ii
et

i
et

ii
i

i

,        ]ˆ)()ˆ(ˆˆ2)ˆ[(
1

1
2
1

ρV )V V(V ρ  ])()ˆ(ˆˆ2)ˆ[(1
2
1      

 ρV)V V()1R)(ˆˆ(1      

)1R()V V()1R(1
2
1)(

1
1)ˆˆ(      

1])(ˆ
2
1ˆˆ[

1
1log0

2
2

22
221

2
1

1222
221

2
1

1i
21

i1i
21

2
210

∈+++
−

+

′′′+++

′′−++

−
′′−+−

−
++

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++

−
−=

−

−

−

μ

μ

μ

μμ
γ

μμ
γ

μ
γ

γ
μθκ

γ
μ

βμμ
γ

β

.             (16) 

Rearranging the above equation, the system of the three recursive equations of ,  and 

 results from collecting terms in , 

DQ2
ˆ DQ1

ˆ

DQ0
ˆ 2)( etμ etμ , and the constant terms for the 

representative agent in country D. Similarly, we have another system of three recursive 

equations of ,  and , which also result from the collecting terms in , FQ2
ˆ FQ1

ˆ FQ0
ˆ 2)( etμ etμ , 

and the constants for the representative agent in country F. All the recursive equations of , 

 and , , for the representative agent in countries D and F are summarized in 

Appendix A. 

iQ2
ˆ

iQ1
ˆ iQ0

ˆ [ FDi ,∈ ]
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When the elasticity of intertemporal substitution is restricted to one , an investor’s 

optimal instantaneous consumption and optimal dynamic asset allocation strategies can be derived 

as:  

1=iϕ
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and 

[ FDiσQQr
e

iii
i

et
ii

i
iii

i ,        ) (
1

ˆˆ
)11()() (1 121i1 ∈

′
−

+
−+−

′
= −−

μγ
μ

γγ
ρVVV1RVVni

t ].     (18) 

In the special case of , the investor’s optimal consumption-wealth ratio equals the 

discount factor. The optimal consumption-wealth ratio in our financial economy is not state 

dependent, which means our optimal consumption weight depends only on the investor’s time 

preference, not on the state variable 

1=iϕ

etμ . Therefore, the investor’s risk attitude and the 

intertemporal hedging considerations are not the determinant of the optimal consumption. 

Additionally, after allocating her wealth on current consumption, Equation (18) shows us that 

investors in countries D and F respectively allocate iγ
1  and [ FDii ,,11 ∈−

γ
] stakes of their 

wealth on the financial assets in order to satisfy their myopic demand and intertemporal hedging 

demand in the case of .  1=iϕ

The myopic demand is for an investor who invests only in a single period horizon or faces a 

constant investment opportunity set. In our optimal asset allocation strategies, the myopic demand 

)() (1 i1 1RVV iii
i r−

′ −

γ
 is determined by the mean-variance efficiency of the opportunity set and 

is expressed as the inverse of the variance-covariance matrix of the world market portfolio in a 

given currency. Since the expected changes of exchange rates are time-varying, the mean-variance 

matrix on our optimization problem is time-varying, and therefore the myopic component is also 

time-varying. On the other hand, intertemporal hedging demand characterizes the demand arising 

from the desire to hedge against changes in the time-varying investment opportunity sets. The 
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intertemporal hedging components of the optimal asset allocation 
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ˆ [ ]FDi , ∈ . The intertemporal 

hedging demand can be determined by the product of the coefficient of risk aversion , the 

variance-covariance matrix , the covariance between risky assets and states , as 

well as the instantaneous rates of changes of the value function .  

iγ

) ( ′ii VV
e

σi
μ ρV

et
ii QQ μ21

ˆˆ +

The impact of pure changes in the time-varying exchange rates on intertemporal hedging 

components depends on the signs of  and . Since  is recursively determined by , 

we first determine the sign of . In the case of 

iQ1
ˆ iQ2

ˆ iQ1
ˆ iQ2

ˆ

iQ2
ˆ 1== ϕγ , Campbell and Viceira (1999, 2002), 

Campbell, Chacko, Rodriguez and Viceira (2004), and Chacko and Viceira (2005) show that the 

only root that maximizes the value function is , which means when 0ˆ
2 =
iQ 1== ϕγ , the 

recursive preference reduces to be the log preference. Moreover, in the more general case where 

, as shown in Appendix A Equation (A5), coefficient  has two real roots of opposite 

signs according to the quadratic equation theory. In each quadratic equation, we would like to know 

which solution is good for our problem from the criteria that the roots of the discriminant are real. 

The value function 

1>iγ iQ2
ˆ

J  is maximized only with the solution associated with the negative root of 

Equation (A5) - that is, the value function J  - is maximized only with the solution that  

when . Moreover, the intercept is negative  when  and is independent on 

the level of the time-varying expected rates of changes in the exchange rates. 

0ˆ
2 <
iQ

1>iγ 0ˆ
1 <
iQ 0ˆ

2 <
iQ

Since  when , the sign of the intertemporal hedging demand depends 

only on the sign of the covariance between risky assets and states. When , the 

intertemporal hedging demand is negative, which means that risky assets yield no hedging ability, 

0ˆ,0ˆ
21 << ii QQ 1>iγ

0 >
e

σi
μρV
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and therefore investors decrease their total allocation on financial assets. On the contrary, when 

, the intertemporal hedging demand on optimal asset allocation is positive, and 

investors will allocate more on the intertemporal stake since risky assets can be used as hedging 

tools.  

0 <
e

σi
μρV

3.2 The generalized solutions of the optimalization  1≠iϕ

When the elasticity of intertemporal substation is not restricted to one, the first-order condition for 

consumption is different from Equation (12) and it will be:  

i

ii
ii

ii
i

i
iiii

W
i
t JJC γ

γϕ

γ

γϕ

γβ ϕϕ −

−

−

−

−= − 1

1

1

1

)1()()()( .                                      (19) 

The first-order condition for financial assets is the same as Equation (13), and as we substitute the 

first-order conditions of Equations (19) and (13) back into the Bellman equation, the exact solution 

to our optimal problem does not appear possible. Campbell (1993), Judd and Guu (1997), Kogan 

and Uppal (2001), Campbell and Viceira (1999, 2002), Campbell, Chacko, Rodriguez and Viceira 

(2004), and Chacko and Viceira (2005) use perturbation approaches to solve the dynamic financial 

optimization problem. Our paper also adopts a more intuitive perturbation method to solve the 

generalized optimization problem - that is, the first-order expansion of the Bellman equation we 

implement is around the elasticity of intertemporal substitution. The approximation is written as:  

 [ FDiIIIIIII ii
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γ
ϕϕ
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ϕ

γ

ϕ

γ

ϕ

] .   (20) 

Substituting Equation (20) back into the Bellman equation and guessing the ordinary differential 

equation present a solution of the form: 

])(~
2
1~~exp[)( 2

210 et
i

et
ii

et
i QQQI μμμ ++= ,  [ ]FDi ,   ∈ .                             (21) 

The approximating Bellman equation can be expressed as: 
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Rearranging the above equation, as shown in Appendix B Equation (B1) to (B3), we have 

three recursive equations of DQ2
~ , DQ1

~  and  that result from the collecting terms in , DQ0
~ 2)( etμ

etμ , and the constants for the representative agent in country D. After this, we can really get the 

indirect utility function and the investors’ optimal consumption policies and their dynamic asset 

allocation strategies in the time-varying international investment environment.  

When , by taking the first-order expansion around the unit elasticity of intertemporal 

substitution, the investor’s optimal instantaneous consumption-wealth ratio is expressed as:  

1≠iϕ

]})(~
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= ,                              (23) 

while the investor’s optimal dynamic asset allocation strategies are: 
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If the elasticity of intertemporal substitution is not restricted to one, then the optimal 

consumption and optimal weight on financial assets are all state dependent. First, the time 

preference β , the risk attitude of investor γ , the intertemporal substitution ϕ , and the state 

variable etμ  are the determinants of the optimal consumption, and therefore in the general case, 

the optimal consumption weight is state dependent and time-varying. Second, investors in countries 

D and F respectively spend iγ
1  and [ FDii ,,11 ∈−

γ
] stakes of their wealth on the financial 

assets as the myopic component and the intertemporal hedging component. The myopic component 

depends only on investors’ mean variance preference on risky assets, not on the elasticity of 
 15



intertemporal substitution, and therefore the myopic component will be the same no matter if the 

elasticity of intertemporal substitution is restricted to one or not. On the other hand, the 

intertemporal hedging component is dependent on the elasticity of intertemporal substitution, and 

the investor’s intertemporal hedging demand on the optimal allocation is 

e
σQQ iii

i
et

ii

i μγ
μ

γ
 ) )(

)1(

~~
)(11( 121 ρVVV −′

−
+

− . When the elasticity of intertemporal substitution is not 

restricted to one, it is an affine function of the time-varying expected rates of changes in exchange 

rates with coefficients iQ1
~  and iQ2

~ , [ ]FDi , ∈ . Here,  of the intertemporal hedging 

demand can be furthered separated into two parts:  the intercept of the intertemporal hedging 

component 

et
ii QQ μ21

~~
+

iQ1
~ , and the pure changes in the time-varying expected rates of changes of exchange 

rates .  et
iQ μ2

~

In the general case of , the value function 1>iγ J  is maximized only with the solution that 

0~
2 <
iQ , and the intercept 0~

1 <
iQ  is therefore negative. Recall that the optimal intertemporal 

hedging depends on the product of the coefficient of risk aversion , the variance-covariance 

matrix , the covariance of risky assets and states , and the instantaneous rates of 

changes of the value function . Since  when , it implies that 

the investor will have a positive intertemporal hedging demand as the covariance between 

unexpected asset returns and revisions in expected future rates of changes in the exchange rates is 

negative , or a negative intertemporal hedging demand when .  

iγ

) ( ′ii VV
e

σi
μ ρV

et
ii QQ μ21

~~
+ ,0~,0~

12 << ii QQ 1>iγ

0 <
e

σi
μρV 0 >

e
σi
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In the case of , a negative sign implies that asset returns will be higher when 

expected future rates of changes in the exchange rates fall, while  implies that asset 

returns yield a lower one when the expected future exchange rates fall. Since the investor is 

normally long in domestic and foreign risky assets, a decline in expected future rates of changes in 

0 <
e

σi
μρV

0 >
e

σi
μρV
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the exchange rates will improve or deteriorate the investment opportunity set and this depends on 

the sign of the covariance between risky assets and state. When the investment opportunity set 

deteriorates, there are offsetting considerations that determine an investor’s attitudes toward assets 

that pay off. A highly risk averse investor ( ) would like to hold assets that deliver wealth in 

unfavorable states of the world, because a risky asset can be thought as a valuable hedging 

instrument for conservative investors to hedge investment-opportunity risk coming from changes in 

exchange rates. In addition, a highly risk averse investor would not hold risky assets in favorable 

states of the world since risky assets provide no hedging ability.  

1>iγ

We would like to know next whether the optimal intertemporal hedging demand can be 

affected by the mean-reversion phenomenon in the foreign exchange market. From the previous 

section, we have shown that  has a negative impact on the intertemporal hedging 

components when the investor is highly risk averse . In this section, we would like to 

discuss the change of the intensity of the mean reversion effects 

et
ii QQ μ21

~~
+

1>iγ

κ  on the foreign exchange rates 

over the intertemporal hedging demand. A comparative analysis of the mean reversion effect κ  

on the intertemporal hedging demand is equal to analyzing κ  on iQ2
~ , since only iQ2

~  of the 

intertemporal hedging component conveys information regarding the mean reversion intensity. 

Therefore, in Appendix C we show that a positive sign of the first derivative 0
~

2 >
∂
∂
κ

iQ  is derived 

for a highly risk averse investor . A decline in the mean reversion speed of the expected 

future exchange rates will lead to a decline in 

1>iγ

iQ2
~ , because 0

~
2 >

∂
∂
κ

iQ . When the intensity of mean 

reversion κ  decreases, the absolute value of iQ2
~  increases since iQ2

~  is negative in sign. 

Therefore, the absolute value of  increases when et
ii QQ μ21

~~
+ κ  decreases. Additionally, when 

, the intertemporal hedging demand of the investor is positive, and a decrease in 0<
e

σi
μ ρV κ  

reveals that the positive hedging ability of the risky asset is increased for a conservative investor. 
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When , the intertemporal hedging demand of the investor is negative, and an increase 

in 

0>
e

σi
μ ρV

κ  reveals that the negative hedging ability of the risky asset is increased for a conservative 

investor. Therefore, a decline in the mean reversion speed of the expected future exchange rate is 

equivalent to an increase in the persistence of shocks to expected future exchange rates, thus 

leading to an increase in the magnitude of intertemporal hedging demand coming from pure 

changes in expected future exchange rates. It is very straightforward that in this situation, the risky 

assets will provide more valuable hedging ability for a conservative investor as a negative sign for 

the covariance between unexpected asset returns and revisions in expected future rates of changes 

in exchange rates.  

4. Numerical analysis 

In this section we first present the relationship between optimal portfolio weights and the 

coefficient of relative risk aversion. Next, we focus on the determinants of the optimal 

intertemporal hedging component:  the coefficient of risk-aversion , the elasticity of 

intertemporal substation , and the intensity of mean-reversion 

iγ

iϕ κ . Since we have already 

briefly introduced the impact of the three parameters on intertemporal hedging demand, hereafter 

we present the scenario analysis on the coefficient of risk-aversion and the elasticity of 

intertemporal substation (  and ), the coefficient of risk-aversion and the intensity of 

mean-reversion (  and 

iγ iϕ

iγ κ ), and the elasticity of intertemporal substation and the intensity of 

mean-reversion ( and iϕ κ ) in order to identify the sensitivity of the three parameters on the 

optimal intertemporal hedging demand.  

4.1 Sensitivity analysis of the investor’s risk attitude on the optimal portfolio weight  

In the optimal portfolio rules shown by Equation (24), the value function J  is maximized only 

with the solution that 0~
2 <
iQ  when , and  has a negative impact on the 

intertemporal hedging demand. Therefore, the sign of optimal intertemporal hedging demand 

depends only on the sign of the covariance between unexpected asset returns and expected foreign 

1>iγ et
ii QQ μ21

~~
+
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exchange rate changes . Since the risky assets the domestic investor faces consist of the 

domestic risky stock of country D, the foreign risky stock of country F, and the foreign riskless 

bond of country F, the sign of  is separately estimated by the covariance between the 

unexpected return of each individual risky asset and the expected change of foreign exchange rate. 

The covariance between unexpected return of the domestic stock of country D and the expected 

change of the foreign exchange rate is estimated to be negative, however, the covariance between 

unexpected return of the foreign stock of country F expressed in the domestic currency and the 

expected change of exchange rate is estimated to be positive. The intuition behind this is that when 

the foreign exchange rate is expected to fall, the foreign currency is less valuable than ever, and the 

future investment opportunities for the domestic risky stock worsen, but for the foreign risky stock 

it improves. Domestic risky stocks yield a high return, however, foreign risky stocks of country F 

expressed in the domestic currency yield a lower return when future investment opportunities 

worsen. Thus, it becomes a more valuable hedging instrument for the conservative investor since 

the future investment opportunity improves as the exchange rate is expected to fall. On contrary, 

foreign risky stocks provide no hedging ability for the conservative investor to hedge opportunity 

risk. In the end, a conservative investor spends more wealth on the domestic risky stock and less 

wealth on the foreign risky stock of country F expressed in domestic currency. We then estimate 

that the covariance between unexpected return of foreign riskless bonds and the expected change of 

the foreign exchange rate is negative. A negative sign of covariance between unexpected return of 

foreign riskless bonds and expected change of the exchange rate implies that foreign riskless bonds 

tend to have a higher return when the expected exchange rate falls, and when an investor is holding 

a long position in foreign riskless bonds, a decline in the expected future exchange rate induces a 

deterioration in the investment opportunity. A highly risk adverse investor will want to hold foreign 

riskless bonds that deliver wealth in unfavorable states of the world, and therefore a conservative 

investor will spend more wealth on foreign riskless bonds since a foreign riskless bond becomes a 

more valuable hedging instrument in order to hedge investment opportunity risk. Foreign riskless 

e
σi
μ ρV

e
σi
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bonds yield a higher return in the situation where the foreign exchange rate is expected to fall when 

the investor is highly conservative. 

Our optimal dynamic asset allocation on financial assets can be represented by the summation 

of the myopic component and the intertemporal hedging component for a long-term period investor. 

Figures 1 through 3 show us the relationship between the attitude of risk aversion and the optimal 

portfolio weights. Since the covariance between unexpected domestic risky asset return and 

expected change of the foreign exchange rate is estimated to be negative, Figures 1 and 3 present 

that the myopic component decreases as the coefficient of risk aversion increases, while the 

intertemporal hedging component first rises then decreases as the investor is more risk averse. 

When  under the estimation of negative , an investor wants to hold assets that 

deliver wealth in unfavorable states of the world, and the intertemporal hedging demand is 

therefore positive. The intertemporal hedging demand is not monotonic in the coefficient of risk 

aversion.  

1>iγ
e

σi
μ ρV

Moreover, a risk averse investor will set up the exposure limit to the position of risky assets. 

When an investor is getting extremely risk adverse, any position in risky assets will exceed her 

exposure limit, and therefore she will limit her exposure to the risky assets in all states of the world. 

The intertemporal hedging component is therefore decreased with the coefficient of risk aversion. 

On the other hand, the covariance between unexpected foreign risky asset return and expected 

change of the foreign exchange rate is estimated to be positive. The myopic component declines as 

the investor becomes more risk averse, but the intertemporal hedging component of Figure 2 first 

decreases and then increases in value as the investor become more conservative. When the investor 

becomes extremely conservative, the investor’s optimal weight on risky assets will decrease to zero. 

From this sensitivity analysis, we conclude that the magnitude of intertemporal hedging demand 

first rises and then falls with the coefficient of risk aversion.  

4.2 Scenario analysis of investors’ risk attitude, elasticity of intertemporal substitution, and the 

mean reversion intensity on the optimal intertemporal hedging component 
 20



As we know, the intertemporal hedging component on the optimal portfolio is not monotonic in the 

coefficient of risk aversion. We further analyze whether the impact of the co-movement of the 

coefficient of relative risk aversion  and the elasticity of intertemporal substitution  for the 

domestic risky stock of country D, foreign risky stock of country F, and foreign riskless bond of 

country F in the domestic currency value is monotonic on the optimal intertemporal hedging 

demand. From Figures 4 to 6, the intertemporal hedging component is more volatile when the 

relative risk aversion changes, and the intertemporal substitution reveals a doubtful trend on the 

intertemporal hedging demand. Therefore, the relative risk aversion is more sensitive than the 

elasticity of intertemporal substitution in determining the optimal weight on intertemporal hedging 

demand, however, the magnitude of the intertemporal hedging demand first rises and then 

decreases as the coefficient of risk aversion increases. 

iγ iϕ

We next leave the coefficient of relative risk aversion be some specific value of 2 to 8, and try 

to understand the impact of the intensity of mean-reversion on the optimal intertemporal hedging 

component. From Figures 7 to 9, in the case where the coefficient of relative risk aversion is 2 in 

value, the intertemporal hedging demand decreases heavily as the intensity of mean-reversion 

increases. Moreover, if the coefficient of relative risk aversion is increased from 2 to 8, the 

intertemporal hedging demand decreases smoothly as the intensity of mean-reversion increases. 

Hence, the lower  is, the higher the variation will be on intertemporal hedging demand as iγ κ  

changes. We conclude that, as the intensity of mean reversion κ  increases, the decline in 

intertemporal hedging demand increases as risk aversion decreases.  

We now present the scenario analysis of the optimal weight of the intertemporal hedging 

demand when the coefficient of relative risk aversion  and the intensity of mean-reversion iγ κ  

change simultaneously. From Figures 10 to 12, as the intensity of mean reversion and the 

coefficient of risk aversion increase, the intertemporal hedging demand decreases.  Both the 

coefficient of risk aversion and the intensity of mean reversion induce a negative impact on the 
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intertemporal hedging demand, since the parameters of κ  and  range from 0 to 1, and 1 to 8 

in our numerical analysis. The difference in parameter ranges causes the result that the relative risk 

aversion is more sensitive than the intensity of mean reversion in determining the optimal 

allocation on intertemporal hedging demand. Once we have narrowed down the range of 

coefficient of risk aversion, the sensitivity of the intensity of mean reversion on the optimal 

intertemporal hedging demand will increase.  

iγ

5. Conclusions 

There is a well-established literature which has found significant evidence that real exchange rates 

are mean-reverting, especially at long horizons. Central bank intervention may cause the presence 

of the mean-reverting phenomenon in foreign exchange rate markets. Most research extends 

intertemporal asset pricing models, with constant parameters, to an international setting. However, 

these papers commonly ignore the significant empirical findings on the mean-reverting 

phenomenon of exchange rates in the real world. Our goal has been to formally evaluate and 

quantify the mean-reverting effect of exchange rates into an international intertemporal model in 

order to find the optimal asset allocation strategies. Therefore, our model is more generalized than 

most international models, by inducing hedging strategies for time-varying investment 

opportunities in the spirit of the models tested by Dumas and Solnik (1992) and Harvey, Solnik and 

Zhou (1992).  

By observing the limitation on log preference, we have presented a continuous-time recursive 

preference model which allows us not only to analyze the effect of risk aversion on investors’ asset 

allocation decision as described by Zapatero (1995), but also to realize the intertemporal 

substitution effect in consumption. Our model accounts for myopic hedging as well as 

intertemporal hedging strategies, and furthermore our model allows for differences in beliefs across 

the representative agents by way of time-varying investment opportunities sets. This generalization 

allows us to analyze the parameter’s effect on optimal allocations.  

We derive the explicit solution by a more intuitive perturbation method of approximation 
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around a particular point in the preference space, whereby the intertemporal elasticity equals 1. The 

numerical exercise shows that the optimal asset allocations can be dividend into a myopic 

component and an intertemporal hedging component, and both components are increased as the 

coefficient of risk aversion decreases. Moreover, the magnitude of intertemporal hedging demand 

first rises and then falls with an increase in the coefficient of risk aversion. When the coefficient of 

risk aversion, the intensity of mean reversion, and the elasticity of intertemporal substitution 

increase, the magnitude of intertemporal hedging demand decreases.  
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Appendix A: The special solution where the elasticity of intertemporal substitution is restricted to one 

 

In the special case where the elasticity of intertemporal substitution is restricted to one, a solution to the ordinary 

differential equation is [ FDiQQQI et
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The equation that results from collecting terms in etμ  is: 
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The equation that results from collecting terms in constant terms is:  
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Here,  is the element of the  row and cth  column of matrixD
rcv rth 1)VV( −′DD  as shown below:  
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We further note that:  
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Similarly, we have the following three equations of ,  and  for the representative investor in 

country F.  

FQ2
ˆ FQ1

ˆ FQ0
ˆ

The equation that results from collecting terms in  is: 2)( etμ
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The equation that results from collecting terms in etμ  is: 
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The equation that results from collecting terms in constant terms is: 
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Here,  is the element of the  row and  column of the matrixF
rcv rth cth 1)VV( −′FF . 

 

Appendix B: The general solution where the elasticity of intertemporal substitution is not restricted to one 

In the general case where the elasticity of intertemporal substitution is not restricted to one, a solution to the 

ordinary differential equation is written and shown by Equation (22) in section 3 as: 
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The equation that results from collecting terms in etμ  is: 
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The equation that results from collecting terms in constant terms is: 
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Similarly, we can derive another three equations of FQ2
~

, FQ1
~

 and FQ0
~

 for the representative investor in country 

F. 

 

Appendix C: Comparative analysis of mean reversion intensity on the intertemporal hedging demand 

In this appendix we would like to analyze the change of intertemporal hedging demand with respect to the mean 

reversion factor κ . From the optimal allocation on risky assets (shown by Equation (24)), the component of 

intertemporal hedging (which conveys information regarding mean reversion intensity) is iQ2
~

, and therefore this 

section briefly analyzes the change of iQ2
~

 with respect to the mean reversion factor κ . First, we present two 

quadratic equations for DQ2
~

 and FQ2
~

 as follows.   

The quadratic equations for DQ2
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 is: 
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The quadratic equations for FQ2
~

 is: 
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Let A , , and  refer to the coefficients in equations (C1) and (C2) associated with B C 2
2 )~( iQ , iQ2

~
, and 

constant terms, respectively. We now obtain:  

[ FDiCQBQAQ iii ,, ]~)~()~( 2
2

22 ∈++=φ .                                                    (C3) 

Totally differentiating equation (C3) with respect to κ  yields: 

 30



 

This result is obtained by choosing the solution associated with the negative root of equations (B2) and (B3), i.e., 

choosing the positive root of the discriminant of the quadratic equations (B2) and (B3) as discussed earlier. 
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Figure 1.  The optimal dynamic asset allocation on the stock of market portfolio of 

country D and their components in relation to the investor’s coefficient of relative risk 
aversion ( γ ) 

Figure 2.  The optimal dynamic asset allocation on the stock of market portfolio of 
country F and their components in relation to the investor’s coefficient of relative risk 

aversion ( γ ) 
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Figure 4.  The intertemporal hedging component of the optimal dynamic asset 
allocation on the stock of the market portfolio of country D in relation to the 

investor’s coefficient of relative risk aversion (γ ) and elasticity of intertemporal 
substitution (ϕ ) 

Figure 3.  The optimal dynamic asset allocation on the local riskless bond of the 
foreign country in relation to the investor’s coefficient of relative risk aversion ( γ ) 
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`  
Figure 5.  The intertemporal hedging component of the optimal dynamic asset 

allocation on the stock of the market portfolio of country F in relation to the 
investor’s coefficient of relative risk aversion ( γ ) and elasticity of intertemporal 

substitution (ϕ ) 
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Figure 7.  The intertemporal hedging component of the optimal dynamic asset 
allocation on the stock of the market portfolio of country D in relation to the 
intensity of mean reversion of the exchange rate (κ ). This is with respect to 

different coefficient of relative risk aversion ( γ ) 

 
Figure 6.  The intertemporal hedging component of the optimal dynamic asset 

allocation on the local riskless bond of the foreign country in relation to the 
investor’s coefficient of relative risk aversion ( γ ) and elasticity of intertemporal 

substitution (ϕ ) 
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Figure 8.  The intertemporal hedging component of the optimal dynamic asset 

allocation on the stock of the market portfolio of country F in relation to the 
intensity of mean reversion of the exchange rate (κ ). This is with respect to 

different coefficient of relative risk aversion ( γ ) 
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Figure 10.  The intertemporal hedging component of the optimal dynamic asset 
allocation on the stock of the market portfolio of country D in relation to the 
intensity of mean reversion of the expected future exchange rate (κ ) and the 

investor’s coefficient of relative risk aversion ( γ ) 

Figure 12.  The intertemporal hedging component of the optimal dynamic asset 
allocation on the local riskless bond of the foreign country in relation to the 

intensity of mean reversion of the expected future exchange rate (κ ) and the 
investor’s coefficient of relative risk aversion ( γ )
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Figure 11.  The intertemporal hedging component of the optimal dynamic asset 
allocation on the stock of the market portfolio of country F in relation to the 
intensity of mean reversion of the expected future exchange rate (κ ) and the 

investor’s coefficient of relative risk aversion ( γ ) 

Figure 9.  The intertemporal hedging component of the optimal dynamic asset 
allocation on the local riskless bond of the foreign country in relation to the 
intensity of mean reversion of the exchange rate (κ ). This is with respect to 

different coefficient of relative risk aversion ( γ ) 
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