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An Application of the Multivariate Student-t Distribution-Based EC-DCC 

Model on Hedging Effectiveness in Stock Index Futures Markets 

 

 

Abstract 

This paper extends Engle’s (2002) multivariate normal distribution based dynamic 

conditional correlation GARCH (DCC) model to a multivariate Student-t distribution 

based error correction dynamic conditional correlation GARCH (EC-DCC) model in 

order to investigate dynamic interactions between stock and futures markets in the FTSE 

100 and Nikkei 225. We then apply this extended model to estimate the optimal 

time-varying hedge ratios. A hedging efficiency comparison among our model and other 

usually used models is conducted to shed light on the time-varying conditional 

correlation coefficients and the multivariate Student-t distribution settings. The empirical 

results of the hedging efficiency comparisons find that the multivariate Student-t 

distribution based EC-DCC model performs best in the FTSE 100 and Nikkei 225. This 

is because our empirical model takes all three important characteristics in the interaction 

between the stock and futures markets into account simultaneously:  the long-term trend, 

the time-varying conditional correlation coefficients as well as volatility, and the fat tail 

or leptokurtic characteristic. 
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I. Introduction 

Ever since the Value-line Stock Index Futures contract went public in 1982 in the Kansas 

City Board of Trade (KCBT), numerous stock index futures contracts have continued to 

appear and have helped investors satisfy their arbitraging, hedging, and speculating needs 

in financial markets worldwide. Owing to standardized features, stock index futures 

contracts prosper and facilitate trading activities among different financial sectors. It is 

hence imperative for investors to be aware of co-varying degrees between cash and 

futures markets so as to gauge the hedging efficiency that results from futures positions 

and to calculate the hedging strategies to be carried forth. Theoretically, the minimum 

variance criterion proposed by Johnson (1960) is frequently invoked to derive the hedge 

ratio theoretically. Various econometric models, such as the OLS, ECM, and GARCH 

models, can be applied to estimate hedge ratios from empirical data for practical 

implementation. 

This paper extends Engle’s (2002) multivariate normal distribution based dynamic 

conditional correlation GARCH (DCC) model to a multivariate Student-t distribution 

based error correction dynamic conditional correlation GARCH (EC-DCC) model. The 

study herein tries to include the time-varying setting of correlation coefficients as well as 

the volatility on estimating optimal time-varying hedge ratios and hedge efficiency 

comparisons that are combined with the multivariate Student-t distribution-based 

estimation procedures. We empirically test the co-varying relationships among major 

stock and futures markets in the FTSE 100 and Nikkei 225 by considering the effect of 

the fat tail or leptokurtic characteristic of financial asset returns through the setting of the 

multivariate Student-t distribution-based error correction dynamic conditional correlation 

GARCH (EC-DCC) model instead of the normal distribution setting.  

A minimum-variance hedge ratio is generally defined as the covariance of spot and 
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futures prices divided by the variance of futures price, which can be estimated by the 

ordinary least square (OLS) regression. Other variables such as price spread, price 

change, and rate of return can be used interchangeably. For example, Hill and 

Schneeweis (1981) find that the minimum-variance hedge ratio is over-estimated by price 

variables in the British Pound and the Deutsche Mark currency markets. They suggest to 

use price spread variables instead in regression analyses in order to prevent problems 

resulting from series autocorrelation. Witt et al. (1987) present that the optimal crossing 

hedge ratios between wheat and corn markets should not be invariant after taking agents’ 

different objective functions into account. Junkus and Lee (1985) compare hedge ratios 

based on four different objectives:  risk eliminating, profit maximizing, risk minimizing, 

and utility maximizing. They use the Value Line, S&P500, and NYSE indexes and 

corresponding futures data to conduct an empirical study, showing the over-hedging 

results from traditional strategies and denoting the better performance of the 

variance-minimizing based hedge ratio. 

Despite its simplicity, assumptions of the OLS regression do not coincide with 

characteristics of financial variables. For instance, the homoscedasticity condition 

requires the second moments of random variables to be constant, and the independent 

condition requires the error term variable to be not auto-correlated. An OLS based hedge 

ratio estimate naturally inherits the time-invariant and independent properties. However, 

the heteroscedasticity and self-correlation conditions are common in financial markets, 

and investors fail to adjust positions in their portfolio in time, because of an OLS based 

hedge ratio and an ill-performed portfolio risk management that is the result. On the other 

hand, the plain vanilla OLS regression model ignores long-term relationships among 

variables. Engle and Granger (1987) assert that two co-integrating series guarantee the 

existence of their error correction term containing abundant information. The short-run 

adjusting dynamics of the error correction term can help the achievement of equilibrium 
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among variables in the long run. In addition, the non-stationary property of time series is 

visible in a financial market, including spot and futures price variables. Although the 

first-order difference operation can help satisfy the common stationary presumption in 

econometric analyses, it may eliminate long-term information contained inside variables.  

Many studies in the literature adopt this idea by taking error correction terms into the 

OLS model so as to advance the estimation of hedge ratios and better the hedging 

efficiency. For instance, Ghosh (1993a) finds that the OLS model underestimates the 

hedge ratios of the S&P500 index futures contract on the S&P500, Dow Jones Industrial 

Average, and the NYSE composite indexes, because its ignores the co-integrating pattern. 

The error correction model can improve hedging performance, because of allowing for 

short-run adjusting dynamics and long-run equilibrium structure among variables. Their 

empirical results are consistent with Ghosh (1993b), Lien and Luo (1993), and Chou et al. 

(1996). While the error correction model resolves problems accompanied by ignoring the 

co-integration relationship among variables in contrast to the OLS model, both of them 

do not take the time-varying property of variances and correlations into account. Thus, 

the estimated hedge ratios are constant and incapable of conducting dynamic hedging 

strategies successfully.  

The famous ARCH and GARCH models developed by Engle (1982) and Bollerslev 

(1986) remind us that the volatility clustering or heteroskedastic pattern is informative in 

predicting returns. They can be applied to advance the estimation of dynamic hedge 

ratios as well. In particular, a multivariate GARCH model (MGARCH) is suitable for 

hedge ratio estimation whenever portfolio risk management deals with positions more 

than one. For example, Bollerslev et al. (1988) first extend the univariate GARCH model 

to a VECH based MGARCH version which becomes the prototype for later MGARCH 

models. Bollerslev’s (1990) constant conditional correlation MGARCH model (the 

CCC-MGARCH model) is widely-adopted in the literature for its great estimation 
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simplicity. Engle and Kroner (1995) develop the BEKK-MGARCH model (named in 

terms of Baba, Engle, Kraft, and Kroner) to guarantee the positive semi-definite property 

which is neglected by the VECH based MGARCH model. 

In terms of hedging effectiveness, Park and Switzer (1995) first apply MGARCH 

models on estimating the hedge ratios of S&P 500, MMI, and the Canadian Toronto 35 

index futures contracts. They find that the CCC-MGARCH model performs better than 

the OLS and VAR models. Lypny and Powalla (1998) obtain similar empirical results in 

Germany’s equity market. In contrast, Lien et al. (2002) find that the AR-CCC 

MGARCH model does not outperform the traditional OLS model in ten equity, currency, 

and commodity markets owing to the over-estimation of volatility persistence. Cochran 

et al. (2004) signify the sudden-change effect of volatility in four currency markets by the 

iterated cumulative sums of squares measure (the ICSS measure, Inclan and Tiao (1994)) 

and use it to complement CCC-MGARCH models. 

Engle (2002) propose another new MGARCH model highlighting the time-varying 

property of dynamic conditional correlations (the DCC-MGARCH model), which is of 

particular importance for portfolio risk management though ignored by previous 

MGARCH models for estimation convenience. Therefore, we use the extended model to 

estimate optimal time-varying hedge ratios and conduct a hedging effectiveness 

comparison among the OLS, ECM, EC-CCC and EC-DCC models without and with the 

multivariate Student-t distribution based models in the FTSE 100 and Nikkei 225. We 

show that a futures contract can greatly reduce its corresponding cash variance and that 

the multivariate Student-t distribution based EC-DCC model performs best in both 

markets simultaneously. Therefore, we find that a new model developed by this study, 

based on Engle’s (2002) DCC-MGARCH model with the error correction term in mean 

equation and multivariate Student-t distribution-based estimation procedure, outperforms 

the other models. This is because our empirical model takes all three important 
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characteristics in the interaction between the stock and futures market into account:  the 

long-term trend, the time-varying conditional correlation coefficients as well as volatility, 

and the multivariate Student-t distribution settings, i.e. the leptokurtic characteristic.  

The rest of this paper is organized as follows:  Section II provides specifications of the 

models, Section III reports the empirical results, and Section IV concludes our findings. 

II. Model Specifications 

In a static sense, we know that due to the well-behaved mathematical properties of 

the normal distribution, it is the most visible setting in the literature. Nevertheless, 

financial time series data and assets returns have been well documented, and many 

alternatives or remedies have been proposed in the literature showing the fat tail or 

leptokurtic characteristic. The Student-t distribution setting is able to capture these 

characteristics, and it is often seen as an interesting and simple alternative to the normal 

distribution since it is characterized by a fat tail or leptokurtic characteristic. Dowd (1998) 

shows that Student-t distribution provides an easy way to capture uncertainty since it 

penalizes the lack of information regarding a portfolio’s standard deviation with a wider 

VaR confidence interval. Kon (1984) and Hull and White (1998) assert that a discrete 

mixture of normal distributions can be used to explain the observed patterns of 

significant kurtosis and a positive skewness of daily data. 

Hsieh (1989) estimates various forms of GARCH models based on a number of 

non-normal error densities for five foreign currencies. He finds that the Student-t and 

generalized error distributions perform better for the Canadian dollar and the Swiss franc. 

Jorion (1996) studies in the Value-at-Risk and provides a suggestion that the risk in 

Value-at-Risk itself should not be overlooked, although Value-at-Risk is an indispensable 

tool to control financial risks. The Student-t distribution is more consistent with financial 

reality than the normal distribution, because it endows extreme quantities with larger 
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probabilities. He also concludes that the Student-t distribution setting is one way to 

remedy estimation errors instead of the normal distribution.  

In the following we first develop a multivariate Student-t distribution based error 

correction DCC-MGARCH (EC-DCC) model to investigate dynamic interactions 

between stock and futures markets. This model estimates the optimal time-varying hedge 

ratios. A hedging efficiency comparison among our model and other usually used models 

is then conducted to shed light on the time-varying conditional correlation coefficients 

and the multivariate Student-t distribution settings. 

In this paper we set the error correction terms in the mean equations for the returns in 

the spot and futures markets. In addition, we extend Engle’s (2002) multivariate normal 

distribution based dynamic conditional correlation GARCH model to a multivariate 

Student-t distribution based dynamic conditional correlation GARCH model as the 

variance equation. The model setting in this paper is as follows.  

The mean equations are:  

0 1 1 1( )t s s t t sts S Fα α λ ε− −= + − + , (1) 

0 1 1 1( )t f f t t ftf S Fα α λ ε− −= + − + , (2) 

where St-1 presents the log prices of stock indices for FTSE 100 and Nikkei 225, and Ft-1 

shows the log prices of stock index futures for FTSE 100 and the Nikkei 225, 

respectively; 11 −− − tt FS λ  is the error correction term; and st and ft are the log changes of 

spot index and futures index prices between time t and t-1, respectively. Our specification 

generalizes the conditionally normal basic structure to the Student-t conditional error 

distribution - that is, the conditional distribution of the innovation of normal distribution 

is replaced by Student-t distribution. 

We now have the following setting: 

);;(~1 vf tStudentt ttt uHu −−Ω                                      (3) 
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where ⎥
⎦

⎤
⎢
⎣

⎡
=

ft

st

ε
ε

tu , stε  and ftε  are the residual terms;  , ,

, ,

s t sf t
t

sf t f t

h h
H

h h
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

; Ht is the 

conditional variance-covariance matrix at time t, and its diagonal elements are sth  and 

fth , which are conditional variances of spot index and futures index returns, respectively; 

and v  is the degree of freedom parameter. The variance equations are: 

2
, 0 1 , 1 2 , 1s t s s s t s s th hν ν ε ν− −= + + , (5) 

2
, 0 1 , 1 2 , 1f t f f f t f f th hν ν ε ν− −= + + , (6) 

, , , ,sf t sf t s t f th h hρ= , (7) 

,
,

, ,

sf t
sf t

ss t ff t

q
q q

ρ = . (8) 

The key element of our interest in addition to conditional variances is the dynamic 

conditional correlations between the spot index and futures index returns, tsf ,ρ . Engle 

(2002) particularly structures the conditional correlation tsfq ,  in equation (8) as follows: 

qsf,,t = sfρ  + γ(zs,t-1zf,t-1 sfρ− ) + δ(qsf,t-1 sfρ− ),                      (9) 

where ,sfρ  is constant unconditional correlation coefficient between stock index and 

stock index futures markets, and 
,,

st

s ts t hz ε=  and 
,,

ft

f tf t hz ε=  are the standardized 

residuals of the spot returns and of futures returns, respectively. 1  Note that the 

time-varying property of covariance tsfh ,  may result from the two time-varying standard 

deviations , ,s th  and ,f th , or the time-varying correlation coefficient tsf ,ρ , because 

of , , , ,sf t sf t s t f th h hρ= . However, the time-varying setting of tsf ,ρ  is often ignored by 

                                                 
1 The EC-CCC model contains all equations (1) through (9), except for the setting of the parameters of γ 

and δ which are the coefficients included in equation (9), i.e. γ = δ = 0. 
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some econometric models for estimation simplification. Thus, we need to investigate the 

dynamics of the conditional correlation coefficients as well as volatility. Therefore, from 

the above setting, the optimal time-varying hedge ratios ( *
tb ) can be calculated by  

,

,

* sf t

f t

h
htb =  = ,

,, .s t

f t

h
sf t hρ  

III Empirical Studies 

This section uses the daily data of the FTSE 100 and the Nikkei 225 stock indices with 

their corresponding futures contracts listed in LIFFE and OSE during the period 

1998/12/31–2006/12/29. Table 1 presents the descriptive and important statistics of the 

four series in terms of their rate of changes. It can be seen that the equity and futures 

markets in FTSE 100 and Nikkei 225 perform positively on average during the sampling 

period. Generally, the equity markets are less volatile than the futures markets, because 

of their smaller standard deviations. Normal distribution fittings for the four series are all 

rejected by the significant Jarque-Bera statistics and the kurtosis coefficients which are 

greater than 3. Thus, the leptokurtic or fat-tailed characteristic common in financial 

markets appears in our samples. This consolidates our setting by applying the 

multivariate Student-t distribution to replace the usual normal-distributed setting for our 

estimation procedures.  

The heteroskedasticity or volatility clustering phenomenon prevails and justifies the 

implementation of MGARCH models according to the significant Ljung-Box Q statistics, 

i.e., the Q2(24) statistics. We also find that the existence of a unit root is strongly rejected 

for each series by the ADF test, and the two pairs of the spot and futures prices series are 

cointegrated significantly.2 Consequently, the ECM setting can be applied to construct 

mean equations for MGARCH models. 

                                                 
2 The detailed test results for different specifications are not presented here for parsimony sake. They are 

available from the authors upon request. 
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— Insert Table 1 about here — 

From the EC-DCC model which specified in section II, the model could be estimated 

by accounting for the dynamic conditional volatility and correlations as well as the 

long-run trend between stock and futures returns. Table 2 through Table 4 present 

estimation results of the EC-CCC and EC-DCC, both which are normal distribution 

based, and EC-DCC with the multivariate Student-t distribution based model, 

respectively. From these models’ estimated results, we find that all parameters in the 

conditional variances are strongly significant. This result indicates that there is a very 

significant GARCH effect in the FTSE 100 and the Nikkei 225 stock indices and their 

corresponding futures contracts. From Table 3 and Table 4, we find that all parameters in 

the dynamic conditional correlation setting are strongly significant.  

— Insert Table 2 about here — 

— Insert Table 3 about here — 

— Insert Table 4 about here — 

It is obvious that the time-varying correlation coefficients between spot and futures 

positions are quite volatile from Figure 1 and Figure 2, which suggest the inadequacy of 

the constant correlation setting in the EC-CCC models and justifies the EC-DCC model. 

This result indicates that there is a very significant time-varying correlation effect 

between the spot stock index return and futures index return in both the FTSE 100 and 

the Nikkei 225 markets. We should not ignore this important effect in constructing 

econometric models, and of course in estimating the optimal time-varying hedge ratios. 

Finally, we see that the standardized residuals and squared standardized residuals present 

that there is no existing serial correlation between the spot and futures markets of FTSE 

100 and the Nikkei 225 from Ljung-Box statistics. This result shows that there is very 

good fitting for these two markets from our model setting. This will make our estimate of 

the time-varying hedge ratios more efficacious.  
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— Insert Figure 1 about here — 

— Insert Figure 2 about here — 

The above empirical results strongly bolster the argument that time-varying variances 

and correlation simultaneously exist in the stock and futures markets of FTSE 100 and 

Nikkei 225, which are two requirements for constructing the optimal dynamic hedge ratio. 

Thus, this paper adopts Ederington’s (1979) framework to justify the time-varying 

property of the volatility structure along with the multivariate Student-t distribution 

setting and to measure our model’s hedging effectiveness. Specifically, a stock index 

futures position is put into an unhedged spot stock index to construct a hedging portfolio. 

Ederington’s (1979) original formula can be written as follows: 

 ( )2 *
t t ts b fσ − , (10) 

where *
tb  is the optimal hedge ratio calculated by two static hedge ratios - the OLS and  

ECM - and three dynamic hedge ratios - the normal distribution based EC-CCC, the 

EC-DCC model, and the multivariate Student-t distribution based EC-DCC model, 

respectively; ts  denotes the spot return, and tf  is the futures price change rate. Figure 

3 though Figure 4 show the optimal time-varying hedge ratio calculated by the 

estimations of the multivariate Student-t distribution based EC-DCC model in the FTSE 

100 and the Nikkei 225, respectively.  

— Insert Figure 3 about here — 

— Insert Figure 4 about here — 

Note that the optimal hedge ratios calculated by the OLS and ECM models are a 

static hedge ratio due to its constant over time result in contrast to the dynamic hedge 

ratio due to the time-varying ones calculated by the normal distribution based EC-CCC 

model, the EC-DCC model, and the multivariate Student-t distribution based EC-DCC 

models. The hedging effectiveness (HE) of a model can be defined as the reduced 
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variance percentage that results from taking *
tb  units of a futures position into the 

unhedged portfolio - that is: 

 ( ) ( )
( )

2 2

2

unhedged hedged
HE

unhedged
σ σ

σ
−

= i i

i

. (11) 

A larger HE means a better hedging performance or a more precise forecasting ability 

on the future volatility structure among equity and futures positions in the hedged 

portfolio. Table 5 lists the HE results of different models. We find that the corresponding 

futures contracts can greatly reduce cash variances of the FTSE 100 and Nikkei 225 

positions. It also can be seen that the multivariate Student-t distribution based EC-DCC 

model outperforms the other ones simultaneously in the two sampling groups, because it 

has the largest HE figures for the two sampling groups. Moreover, even with the normal 

distribution presumption, the EC-DCC model still performs better than the EC-CCC 

model and other static models. This may result from the fact that the CCC model fails to 

capture the time-varying dynamics of correlation coefficients. On the other hand, the 

EC-DCC model with the normal distribution setting performs worse than the EC-DCC 

model with the Student-t distribution setting in both scenarios. Consequently, the settings 

of the time-varying correlation coefficients and the multivariate Student-t distribution do 

matter and cannot be ignored especially for many fund managers conducting portfolios 

worth millions or billions. 

— Insert Table 5 about here — 

IV Conclusion 

The volatility clustering or heteroskedasticity feature prevailing in financial markets 

underlies the dynamic property of optimal hedge ratios or covariances, which is 

neglected by the OLS and ECM models. On the other hand, the CCC-MGARCH models 

take the correlation component as a constant for estimation simplicity, which may fail to 
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identify the fact that not only the variances but also the correlation coefficient matters in 

a time-varying covariance. In addition, the leptokurtic or fat-tailed characteristic is 

common in financial markets and have been proposed in the literature. Therefore, the 

simultaneous consideration of time-varying variances and correlation coefficients and a 

leptokurtic or fat-tailed characteristic is more consistent with reality and extraordinarily 

important for estimating optimal hedge ratios. This paper extends Engle’s (2002) 

multivariate normal distribution based dynamic conditional correlation GARCH (DCC) 

model to a multivariate Student-t distribution based error correction dynamic conditional 

correlation GARCH (EC-DCC) model to investigate dynamic interactions between stock 

and futures markets. This model has estimated the optimal time-varying hedge ratios. A 

hedging efficiency comparison among our model and other usually used models has been 

conducted to shed light on the time-varying conditional correlation coefficients and the 

multivariate Student-t distribution settings. The empirical results of the hedging 

efficiency comparisons justify the above comments and denote the best performance of 

the multivariate Student-t distribution based EC-DCC model in the FTSE 100 and Nikkei 

225. 
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Table 1.  Basic statistics of the samples’ rate of changes 

Data: The daily rates of change for the FTSE 100 and Nikkei 225 stock indices and 
their futures prices during the period 1998/12/31–2006/12/29 are used. 

 
  FTSE 100 Nikkei 225 
 Spot Futures Spot Futures 
Number of Sample 2,086 2,086 2,086 2,086 
Mean 0.675% 0.7% 2.625% 2.775% 
Standard Deviation 281.175% 285.4% 338.075% 344.175% 
Skewness -0.2027*** -0.1619*** -0.1194*** -0.1194*** 
Kurtosis 6.10*** 6.06*** 4.88*** 4.95*** 
Jarque-Bera 847.38*** 821.66*** 310.53*** 336.71*** 
Q(24) 69.37*** 70.22*** 79.23*** 82.18*** 
Q 2 (24) 2389.54*** 2254.28*** 322.43*** 317.40*** 

1)  *, **, and *** denote significance at the 10%, 5%, and 1% levels, separately. 
2)  The mean and standard deviation are calculated on a yearly basis. 
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Table 2.  The estimation results of the normal distribution based EC-CCC model 

Data: The daily rates of change of the FTSE 100 and Nikkei 225 stock indices and 
their futures prices during the period 1998/12/31–2006/12/29 are used. 

 
Parameters FTSE 100 Nikkei 225 
Conditional mean   
α0s (×10-3) 2.638 (4.138)***  5.669 (5.959)***

α1s (×10-1) -0.200 (-3.457)*** -4.985 (-5.473)***

α0f (×10-2) -1.490 (-22.224)*** -0.156 (-1.894)*

α1f  0.138 (22.928)*** 0.205 (2.201)**

Conditional variance  
v0s (×10-6) 0.796 (3.527)*** 3.853 (4.875)***

v0f (×10-6) 0.761 (3.570)*** 4.135 (4.920)***

v1s 0.044 (8.042)*** 0.063 (9.255)***

v1f 0.043 (8.357)*** 0.056 ( 8.867)***

v2s 0.946 (131.849)*** 0.915 (94.985)***

v2f 0.948 (142.129)*** 0.922 (98.229)***

Unconditional correlation  
ρsf 0.977 (117.987)*** 0.973 (83.947)***

Spot )24(Q  14.99 10.68 
 )24(2Q  31.70 29.53 

Futures )24(Q  18.38 11.65 
 )24(2Q  28.08 26.80 

1)  *, **, and *** denote significance at the 10%, 5%, and 1% levels, separately. 
2)  Figures in parentheses denote corresponding t-statistics. 

 
 
 
 
 

 

Page 17 of 22

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 18

 

Table 3.  The estimation results of the normal distribution based EC-DCC model 

Data: The daily rates of change of the FTSE 100 and Nikkei 225 stock indices and 
their futures prices during the period 1998/12/31–2006/12/29 are used. 

 
Parameters FTSE 100 Nikkei 225 
Conditional mean   
α0s (×10-3) 2.407 (6.257)*** 5.533 (6.162)***

α1s (×10-1) -0.184 (-5.243)*** -4.969 (-5.764)***

α0f (×10-2) -1.420 (-16.695))*** -0.177 (-1.927)*

α1f  0.131 (17.149)*** 0.220 (2.483)**

Conditional variance  
v0s (×10-6) 0.656 (3.818)*** 2.525 (3.893)***

v0f (×10-6) 0.651 (3.700)***  2.924 (3.908)***

v1s 0.051 (8.680)*** 0.070 (7.998)***

v1f 0.051 (8.760)*** 0.063 (7.435)***

v2s 0.944 (151.605)*** 0.918 (90.867)***

v2f 0.945 (153.509)*** 0.922 (87.568)***

Conditional correlation  
γ 0.020 (5.617)***  0.031 (3.050)***

δ 0.974 (94.786)*** 0.960 (56.392)***

Spot )24(Q  14.42 10.18 
 )24(2Q  29.63 26.01 

Futures )24(Q  17.90 10.84 
 )24(2Q  26.58 23.06 

1)  *, **, and *** denote significance at the 10%, 5%, and 1% levels, separately. 
2)  Figures in parentheses denote corresponding t-statistics. 
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Table 4.  The estimation results of the multivariate Student-t distribution based 
EC-DCC model 

 

Data: The daily rates of change of the FTSE 100 and Nikkei 225 stock indices and 
their futures prices during the period 1998/12/31–2006/12/29 are used. 

 

Parameters FTSE 100 Nikkei 225 
Conditional mean   
α0s (×10-3) 2.750 (4.591)*** 5.545 (5.917)***

α1s (×10-1) -0.214 (-3.921)*** -4.980 (-5.587)***

α0f (×10-2) -1.380 (-18.245)*** -0.176  (-3.834)***

α1f  0.128 (19.041)*** 0.219 (3.392)***

Conditional variance  
v0s (×10-6) 0.667 (3.595)*** 2.518 (3.739)***

v0f (×10-6) 0.661 (3.566)*** 2.913 (3.829)***

v1s 0.051 (8.567)*** 0.070 (8.007)***

v1f 0.051  (8.675)*** 0.063  (7.415)***

v2s 0.945 (146.961)*** 0.918 (89.682)***

v2f 0.947 (150.463)*** 0.922 (87.257)***

Conditional correlation  
γ 0.019 (5.374)*** 0.031 (3.149)***

δ 0.975 (84.312)*** 0.960 (58.095)***

Spot )24(Q  14.40 10.18 
 )24(2Q  29.70 26.01 

Futures )24(Q  17.93 10.85 
 )24(2Q  26.84 23.04 

1)  *, **, and *** denote significance at the 10%, 5%, and 1% levels, separately. 
2)  Figures in parentheses denote corresponding t-statistics. 
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Table 5.  Hedging effectiveness (HE) comparison of different models 

Data: The daily rates of change of the FTSE 100 and Nikkei 225 stock indices and 
their futures prices during the period 1998/12/31–2006/12/29 are used. 

 
Average hedge ratio Hedge effectiveness (HE) Model FTSE 100 Nikkei 225 FTSE 100 Nikkei 225 

OLS 0.986872 0.998970 88.8080% 82.7542% 

ECM 0.9869 0.9990 89.9973% 83.8263% 

EC-CCC model with normal 
distribution setting 0.967104 0.950789 91.2406% 85.8163% 

EC-DCC model with normal 
distribution setting 0.969717 0.953604 93.0413% 91.5226% 

EC-DCC model with Student-t 
distribution setting * 0.970138 0.953602 95.8573% 94.8293% 

1)  * denotes the best hedging efficiency in each hedged portfolio. 
2)  ( ) ( )

( )

2 2

2

unhedged hedged
HE

unhedged
σ σ

σ
−

= i i

i
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Figure 1.  Time-varying correlation coefficients of the samples’ rates of change 

Data: Sampling period covers the daily rates of change of the FTSE 100 stock indices 
and their futures prices during the period 1998/12/31–2006/12/29. The 
conditional correlation coefficient dynamics are calculated by the normal 
distribution based EC-CCC model and the multivariate Student-t distribution 
based EC-DCC model. 
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Figure 2.  Time-varying correlation coefficients of the samples’ rates of change 

Data: Sampling period covers the daily rates of change of the Nikkei 225 stock 
indices and their futures prices during the period 1998/12/31–2006/12/29. The 
conditional correlation coefficient dynamics are calculated by the normal 
distribution based EC-CCC model and the multivariate Student-t distribution 
based EC-DCC model. 
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Figure 3.  The optimal time-varying hedge ratio calculated by the estimations of 
multivariate Student-t distribution based EC-DCC model for FTSE 100 

 

Data: Sampling period covers the daily rates of change of the FTSE 100 stock indices 
and their futures prices during the period 1998/12/31–2006/12/29.  
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Figure 4.  The optimal time-varying hedge ratio calculated by the estimations of 
multivariate Student-t distribution based EC-DCC model for Nikkei 225 

 

Data: Sampling period covers the daily rates of change of the Nikkei 225 stock 
indices and their futures prices during the period 1998/12/31–2006/12/29.  
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