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Abstract 

This study highlights the effects of regular and irregular volatilities 

on futures pricing and derives a general-equilibrium formula in its 

closed form. Our comparative static and simulation results show 

that disputed arguments in literature among economic variables 

can be explained by different dimensions of market volatility in the 

economy. For example, the relative size of speed of mean reversion 

parameters in the dynamics of growth and variability features 

dominates the relationship between futures price and market 

volatility. 

Keywords: jump risk, information time, information intensity, intertemporal 

futures pricing model. 
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Ⅰ  Introduction 

This study explores whether returns volatility explains the value for stock futures, 

which simultaneously entails reciprocal rights and obligations. The setting of 

symmetric futures payoffs is in contrast with that for call or put options, for which 

spot price with greater volatility endows the holder a greater in-the-money probability 

within the Black and Scholes’ (1973) framework. Namely, market volatility serves as 

a variable to option price but does not appear in the cost of carry model. 

Following Hemler and Longstaff (1991), we posit and model that, nevertheless, 

market volatility affects futures price due to the fact that the economic variables may 

be highly interrelated in the general-equilibrium sense. We also model that the signs 

and magnitudes of the correlations among the variables vary among different types of 

market volatility. Specifically, a usual or persistent random source may be taken as a 

‘regular’ volatility and specified by a stochastic process, whereas a rare and abrupt 

influential one may be regarded as a source of ‘irregular’ volatility and specified by a 

different process. 1  The coexistence of the two processes illuminates our 

understanding of the well-known leptokurtosis of financial return series in that 

observations with the regular one serve to form the relative high peak and those with 

the irregular one serve as the relative fat tails in terms of statistical distribution.  

Namely, we can decompose volatility into the regular or irregular part in terms of 

information arrivals and accompanied effects. In a fixed time interval, information 

arriving with a tiny frequency but with a great impact such as the 911 terrorist attack 

in 2001 and the stock market crash in 1987 may be deemed irregular, whereas 
                                                 
1  Merton (1976) uses the terms ‘normal’ and ‘abnormal’ vibrations, which are assumed to be a 
constant and a Poisson process separately, to decompose the total change in stock price in a 
‘partial-equilibrium’ framework (pp.127, the second paragraph). His still and more well-known name 
of the stochastic ‘abnormal’ part is ‘jump’. In this study, we follow Merton’s line with applying the 
‘information time’ setting on his ‘normal’ part to address the synchronic and stochastic essence of state 
variables in a ‘general-equilibrium’ framework. Thus, we use the terms ‘regular’ and ‘irregular’ instead 
of ‘normal’ and ‘abnormal’ to make a differentiation. 
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information occurring with a higher frequency and with a less significant effect may 

be regarded as regular. The frequency of the regular or irregular information arrivals 

is the so-called regular or irregular “information arriving intensity”. The great impact 

by an irregular information arrival is the so-called “impulse effect”. 

Specifically, pricing contingent claims can be achieved by the no-arbitrage 

argument or a general equilibrium framework. The former is based on an equivalent 

comparison of expected returns and risks between different positions. In terms of the 

milestone of continuous-time intertemporal models, Black and Scholes’ (1973) option 

pricing theory, an arbitrage portfolio yields a return equivalent to a risk-free rate after 

adjusting weights and replicating components repeatedly and massively by market 

participants. The motive of chasing up arbitrage opportunities guarantees formulation 

of the well-known BS partial differential equation and the closed-form formulas. 

However, the no-arbitrage replication strategy needs marketable assets which may not 

be available in reality to eliminate market risks, which is the so-called market 

completeness issue 2 . Additional assumptions are needed to deal with the 

‘incompleteness’ predicament in the no-arbitrage strand. 3  Moreover, dynamic 

linkages among market variables can not be comprehended. The employment of a 

general equilibrium model to price contingent claims is justified thereby. Cox, 

Ingersoll, and Ross (1985) have established such a standard.4 The salient role of 

market volatility in futures pricing can be addressed through their well-known 

                                                 
2  Please refer to Duffie (2001) for a more thorough discussion. 
3  For instance, Merton (1976) and Cox and Ross (1976) use assumptions of constant Sharpe ratio and 
diversifiable property to deal with the jump risk. The cost of these maintained hypotheses is that risk 
premia appear in fundamental valuation equations and resulting formulas (e.g., Cox, Ingersoll, and 
Ross (1985) and Hull and White (1987)). And the implementation of the pricing formulas in reality is 
hindered. 
4  The fact that the agent’s utility is unobservable may be a major drawback for applying general 
equilibrium models in contrast to the no-arbitrage argument. Yet Hemler and Longstaff (1991) derive a 
futures pricing formula and claim it is a “preference-free” model. 
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platform. For instance,5 Hemler and Longstaff (1991) derive a futures pricing formula 

and find that market volatility plays a significant role in futures pricing under a 

general equilibrium framework. This result inspires our intention to further explore 

effects from different components of market volatility, namely, the regular and 

irregular parts.   

Merton (1976) accentuates that a rare event such as the discovery of an important 

new oil well or the loss of a court triggers sudden and abrupt stock price changes of a 

specific industry or a firm. Yet the diffusion term and the Wiener process in the 

widely-used log-normal diffusion process are not adequate for characterizing the large 

resulting impulse and small occurrence probability of the jump. He thus appends a 

Poisson process to the original diffusion process in order to depict the abnormal effect. 

Subsequent empirical and theoretical studies follow him and highlight the event risk 

in pricing contingent claims. (For example, Jorion (1988), Naik and Lee (1990), Bates 

(1991, 1996, 2000), Bakshi, et al. (1997), Scott (1997), Hilliard and Reis (1998), 

Duffie, et al. (2000), Pan (2002), Eraker, Johannes, and Polson (2003), Eraker (2004), 

Liu, Longstaff, and Pan (2003)). 

As the stochasticity of irregular market volatility dynamics can be described by 

the Poisson process, the stochasticity of regular part can be described by the so-called 

SV (stochastic volatility) models. Namely, a supplementary process is used to 

describe the stochastic property of the diffusion parameter embedded in the original 

spot price process. Prevalent formulations include the generalized Wiener process, 

squared-root process, Ornstein-Uhlenbeck processes, and their variations or 

                                                 
5  There are various extensions of general-equilibrium futures pricing models from CIR’s (1985) 
model. For instance, Richard and Sundaresan (1981) construct an intertemporal rational expectation 
model in a multi-good economy with identical consumers. They find that effectiveness of consumption 
hedging is the key to discern normal backwardation or Contango phenomenon. Cox, Ingersoll, and 
Ross (1981) prove that if futures price and bond price are positively correlated, then the futures price is 
less than the forward price; if they are negatively correlated, then the reverse result holds. 
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combinations. However, these models provide fitting flexibility at cost of numerous 

parameters to be estimated.6 Chang, Chang, and Lim (1998) adopt Clark’s (1973) 

terminology and develop a more parsimony model to manage the predicament. In 

contrast to the SV models, which include an additional process with more parameters 

to be estimated, a Bernoulli variable with a single parameter to be estimated is 

substituted into the spot return process. Chang, Chang, and Lim (1998) argue that the 

information-time setting not only helps to reduce modeling complexity but also to 

help to capture the synchronic variations across state variables. 

Extant literature emphasizes the coexistence of stochastic volatility and jump 

settings to capture empirical phenomena, acknowledging that the pure regular setting 

may underestimate total volatility.7 For instance, eight estimated standard deviations 

are needed to fully reflect effects from U.S. historical major events by Heston’s (1993) 

stochastic volatility model. (Eraker, et al., 2003). Moreover, the coexisting stochastic 

volatility and jump settings may explain the ‘leptokurtic’ phenomenon. Namely, a 

normal distribution is inadequate to fit financial return series for their high-peaked, 

fat-tailed, or even skewed characteristics.8 On the other hand, as a result of effects 

from regular and irregular volatility on futures pricing have not been discussed in 

previous literature through a general-equilibrium framework, we apply the 

information-time setting of Chang, et al. (1998) to describe regular stochastic 

volatility and Merton’s (1976) jump setting to capture irregular stochastic volatility in 

                                                 
6  Please refer to Hull and White (1987), Wiggins (1987), Scott (1987), Chesney and Scott (1989), 
Melino and Turnbull (1990), Stein and Stein (1991), Heston (1993), Amin and Ng (1993) for more 
details.  
7  See Bakshi, et al. (1997), Bates (1996, 2000), Pan (2002), Eraker, et al. (2003), Liu, et al. (2003), 
and Earker (2004) for more details. 
8  Various distributions are suggested to replace the normal assumption in static sense. For instance, 
Fama (1965) claims that stable Paretian distribution with characteristic exponent less than 2 could do; 
Paretz (1972) and Blattberg and Gonedes (1974) suggest student t distribution; as for Kon (1984), a 
discrete mixture of normal distributions is proposed to explain the observed patterns of significant 
kurtosis and positive skewness of daily data.  
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Cox, Ingersoll, and Ross’ (1985) economy. Equilibrium stock index futures price and 

interest rate are derived in their analytic forms. Partial differentiation and simulation 

results are provided as well to investigate effects from different components of market 

volatility. We find that both sign and magnitudes of correlations among variables 

change substantially even when different economies are equipped with similar 

features of growth and variability outlooks. Decomposing volatility into regular- and 

irregular- parts, not only helps minimizing the complications but also identifying the 

different relationships among main variables, especially when the economic outlooks 

appear to be similar. 

In summary, we develop a more generalized futures pricing model similar to 

Hemler and Longstaff (1991) by adopting the jump and the information-time settings. 

We find that the stochastic regular and irregular volatilities as well as the relative 

mean-reverting speed of the growth and variability features in the index dynamics 

serve as primary pricing factors. The remainder of this paper is organized as follows. 

We derive a close-formed pricing formula allowing for information-time and jump 

settings in Section II. Partial differentiation and simulation results are provided in 

Section III. Section IV concludes our study. 

 

II  Theoretical Framework and Futures Pricing Formulas 

We develop an economy based on CIR (1985) and Hemler and Longstaff (1991) with 

stochastic state macroeconomic variables to depict dynamics of growth and variability 

features, and with an additional consideration of possible extreme events as Merton 

(1976) has noted. The information-time setting of Chang, et al. (1998) is employed as 

well to address the stochastic essence of the regular volatility. Not only for its 

parsimony as compared with other usual SV models, the information time setting is 
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suitable for the general equilibrium model in that it highlights the notion that an 

information arrival simultaneously affects more than one state variable governing 

economic equilibrium conditions. 

As shown in Equation (1), a Poisson process ( )k d m t  is supplemented in an 

typical Itô process d p
p

 to characterize the irregular volatility component of the 

production output p.  is a deterministic impulse function of percentage change of 

the production output level resulted from a jump event, 

k

( )d m t  is a Bernoulli 

variable controlling the occurrence of a jump event with probability m dtλ ×  in an 

instantaneous time span . For instance, very few investors could accurately foresee 

the crash of 1987 before the “Black Monday” so that market anticipation on the 

occurrence probability 

dt

m dtλ ×  is negligible a priori. Nevertheless, the associated 

impulse effect k is tremendous because the S&P 500 dropped 20.4% on the single day. 

 ( ) ( ) ( ) ( ) ( ) ( ), , , ,m p t
d p ,p t X p t k dt p t Y p t d z k d m t
p

μ λ σ⎡ ⎤= − + +⎣ ⎦  (1) 

where 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

2 2 2

, , , , , ,

, , , , ,

1 with probability

0 with probability 1 ,
m

m

p t X p t dt p n X p n d n X p n d n

,p t Y p t dt p n Y p n d n Y p n d n

dt
d m t

dt

μ μ μ

σ σ σ

λ

λ

= =

= =

×⎧⎪= ⎨
− ×⎪⎩

 

and 

( )
1 with probability

0 with probability 1- .

n

n

dt
d n t

dt

λ

λ

×⎧⎪= ⎨
×⎪⎩

 

Note that mλ  and nλ  are the so-called irregular and regular information intensities 
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under the property of Poisson process, because their sizes are positively related to the 

frequencies of irregular and regular information arrivals given a fixed time interval. 

With more independent regular and irregular events occurring in the time interval, the 

spot price is more apt to change in an instantaneous time span. On the other hand, in 

contrast to a “calendar-time” span tΔ  which is with a constant time interval, an 

“information-time” span  is with random time interval in cases when the arrival 

timing of information is uncertain. The random variable  is substituted into the 

growth feature 

nΔ

d n

( ) (, ),p t X p tμ  and the variability feature ( ) ( ), ,p t Y p tσ  of 

the economy in order to replace the original calendar-time setting  in the 

intertemporal sense. Namely, the “synchronic” stochasticity of the growth and 

variability features is controlled by the same Bernoulli variable  in an 

instantaneous time span  with probability 

dt

d n

dt n d tλ × . It is devised to reduce the 

modeling complexity and articulate the economic fact that no regular volatility is 

resulted in if no information arrives. In addition, μ  and σ  are constants in the 

information-time sense, and X  and Y  are two stochastic state variables affecting 

the production level through drift and diffusion terms in Equation (1). The dynamics 

may be described as 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ) ( )2 2 2

, , , , , ,

, ,

, , , ,

, , , , ,

X td X a X t b X t t dt c X t X X t d z

a X t b X t X X t t

a X n b X n X X n d n a b X d n

c X t X X t dt c X X n d n c X d n

= − +⎡ ⎤⎣ ⎦

−⎡ ⎤⎣ ⎦
= −⎡ ⎤⎣ ⎦

= =(

,

X X

d

X n

= −
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

, , , , ,

, , ,

, , , ,

Y tdY f Y t g Y t Y Y t dt h Y t Y Y t d z

f Y t g Y t Y Y t dt

f Y n g Y n Y Y n dn f g Y dn

= − +⎡ ⎤⎣ ⎦

−⎡ ⎤⎣ ⎦

= − = −⎡ ⎤⎣ ⎦

,
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and 

( ) ( ) ( ) ( )2 2, , , ,h Y t Y Y t dt h Y n Y Y n d n h Y dn= = 2 ,

)

)

 

where  are constant and positive parameters of mean-reverting speed,  

are long-term averages, and (  are diffusion terms of 

( ,a f ( ),b g

,c h ( ),X Y  in the two 

Ornstein-Uhlenback processes with the square-root characteristic. Specifically, we 

generalize the setting of Hemler and Longstaff (1991) and CIR (1985) in order to 

discern effects from the growth and variability features in the production dynamics, 

which turns out to be relevant in Section III. 

The calendar-time based stochastic processes can be stated in the 

information-time sense with straightforward algebraic manipulations: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

,  , ,

, ,

and

, ,

m p n

X n

Y n

d p X n t d n t k dt Y n t d z k d m t
p

d X n t a b X t d n t c X t d z

dY n t f g Y t d n t h Y t d z

μ λ σ= − + +

= − +⎡ ⎤⎣ ⎦

= − +⎡ ⎤⎣ ⎦

 (2) 

where ( ) ( ) ( )nd z t dn tε•• =  is an information-time based Wiener process 

characterized by a standardized normal random variable ( )tε•  and . Note that 

the lowercase is denoted by n instead of t. Consistent to real world phenomenon, 

Equation 

( )n t

(2) models that the sources of regular volatility, namely, both growth and 

variability features, fluctuate synchronically. For instance, overreaction to earning 

growth and excess volatility usually amplify each other in financial markets (Shiller, 

2002). We also assume that ( )d m t , ( )d n t , , , and  are 

mutually independent innovations.  

( )p td z ( )X td z ( )Y td z

As in Hemler and Longstaff’s (1991) setting, there are a fixed number of 
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identical agents who seek to maximize their time-additive preferences. The 

representative agent’s lifetime utility is of the form: 

 ( )( )ln ,s
t t

E e C t dtρ∞ −⎡ ⎤
⎢ ⎥⎣ ⎦∫  

where  denotes the agent’s consumption at time t , and ( )C t ρ  is agent’s 

intertemporal discount rate of his/her lifetime utility. The investor chooses the levels 

of portfolio weights  to allocate his/her wealth W  on the physical goods , 

contingent claims , riskless borrowing or lending positions, and his/her 

consumption in order to maximize the lifetime utility of the representative agent 

subject to a budget constraint: 

w p

iF

 1 .i i

i

p piF F
i i

d p d FdW w W w W w w W r dt C dt
p F

⎛ ⎞= + + − − −⎜ ⎟
⎝ ⎠

∑ ∑  

The value of stock or the underlying asset of the index futures contract is the 

realized wealth after consumption. Its dynamics ( dW
W

) and the equilibrium interest 

rate r can be obtained under the market clearing conditions and standard optimal 

control procedures. 

 ( ) ( ) .m p n
dW X d n k dt Y d z k d m
W

μ λ ρ σ= − + + +  (3) 

 .n m nr X k Vλ μ λ λ= − −  (4) 

It is intuitive that the equilibrium interest rate  is determined by three components 

including the expected return on the production activity 

r

Xμ , the expected jump 

effect m kλ  from the irregular volatility component, and the regular volatility V  

where 

  (5) 2 .V σ Y
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The resulting dynamics of the equilibrium interest rate and the regular volatility can 

be obtained as well: 

( )

( ) ( )

2

,

n m n n

n m n nX n Y n

fd r a b k V g V r d n
a

c r k V d z h V d z

λ μ λ λ λ σ

λ μ λ λ λ σ

⎧ ⎫⎡ ⎤= − − − − −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

+ + + −

 

and 

( ) ( )
2 .Y ndV f g V d n h V d zσ σ= − +  

Moreover, a partial differential equation for pricing the sock index futures contract is 

derived: 9

 

( )
( ) ( )

2

2 2

2 2

1
2

1 1 .
2 2

t W n m n

X n Y n WW n

XX n YY n

F F Y W W k W X

F a b X F f g Y F W Y

F c X F h Y r F

λ σ λ ρ λ μ

λ λ λ

λ λ

⎡ ⎤+ − − + +⎣ ⎦

+ − + − +

+ + =

σ  (6) 

Nevertheless, X and Y are unobservable state variables. In order to express stock index 

futures price with economic meanings, we transforms the unobservable state variables 

X  and Y  into observable interest rate  and market variance  by Equation r V (4) 

and (5). Then we can solve the equilibrium futures price in its closed form: 10

 

( )

( ) ( ) ( ) ( ) ( ) ( )

( )

2 2 3
1

1
1

0

, , , , , ,

!

, , , , , , ,

n
k

m n

N
Q r t Q Q V te n

N

N

F W r V M N t

e
W t e Q e

N

E W r V M N t

λ τ
ρ λ τ λ

τ

λ τ

τ

−
−

× + − ×∞⎡ ⎤− + −⎣ ⎦

=

⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥= ⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

= Ψ⎡ ⎤⎣ ⎦

∑  (7) 

where 

                                                 
9  Please refer to Appendix A for the proof. 
10  Please refer to Appendix B for the proof. 
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( ) ( ) ( ) ( )

2 2 22 2

2

22

1
2 2

m

n

f ga b
h hc c NN f k Qa

N N

e eQ e
a e a f e f

σμ λ
νκ

λ
κ ν

κ ν
κ κ ν ν

− + × ×−
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= × ⎢ ⎥⎢ ⎥− + + + − + + +⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

×

)

, 

( )
( ) (2

2 1

1 1

N

N N

e
Q

a e e

κ

κ κκ

− +
=

− + + +
, 

( )
( ) ( )3

2 1

1 1

N

N N

e
Q

f e e

ν

ν νν

− +
=

− + + +
, 

2 22a cκ μ= − , 

2 22 2f hν σ= + , 

and 

( ) ( ) ( ) ( ) ( ) ( )2 2 3
1

1

1, , , , , ,
k

m n
Q r t Q Q V te

W r V M N t W t e Q e
ρ λ τ λτ

− × + − ×⎡ ⎤− + −⎣ ⎦Ψ = . 

Note that M and N are two Poisson random variables in the time period (T–t) 

originated from the Bernoulli variables dm and dn in an instantaneous time span dt, 

and ( )M mE M λ τ=  and ( )N nE N λ τ= . Ψ  is the equilibrium futures price before 

expectation operation of the regular randomness of N. Equation (7) shows that the 

equilibrium futures price is an explicit function of variables W, r, V, τ , agent’s 

intertemporal discount rate ρ , the expected impulse effect of percentage change 

associated with a jump event on the production activity , and stochastic volatilities 

resulted from the regular and irregular information intensities controlled by 

instantaneous probabilities 

k

nλ  and mλ .  

Substituting 0τ =  into Equation (7) verifies that the equilibrium stock index 

futures price satisfies the boundary condition ( ) ( )F T W T=  at contract expiration 

date T. Namely, the futures price and spot price should be identical at the expiry time 

 13



to satisfy the no-arbitrage condition. On the other hand, If M and N are non-stochastic 

with 0mλ =  and 1nλ = , then Equation (7) degenerates to the Hemler and 

Longstaff’s (1991) solution. Moreover, when the state variables X and Y are 

non-stochastic except for M and N, the equilibrium interest rate r and market volatility 

V become constants and the solution degenerates into the cost of carry model. 

 

III  Properties of General-Equilibrium Pricing of Stock Index 

Futures 

A. Comparative Static Results 

Let us clarify the primary functional regularities and well-behaved conditions as 

follows. First, a greater mean-reverting speed parameter of a dynamics pulls outcomes 

back to its long-term average in a greater strength. Namely, the interest rate  and 

the regular market volatility V  become more stable as  and 

r

a f  increase. 

Similarly, smaller diffusion terms in their dynamics create the same effect. Second, 

 in Equation 1Q (7) must be positive to ensure nonnegative futures price levels. Such 

a condition is accomplished by requiring that the economy is stable to some extent 

between one mean-reverting tendency and two fluctuating sources, i.e., the interest 

rate mean-reverting speed a, the interest rate volatility , and the physical 

production growth parameter 

2c

μ . Albeit  is positive because of the positive 3Q ν  

from its positive constituents,  must be greater than or equal to 2a 22 c μ  in order to 

guarantee that both  and  are positive. Third, both probabilities 2Q 1Q mλ  and nλ  

are nonnegative, and the sign of expected irregular impulse effect  depends on the 

property of rare event. For instance,  is positive for new major technology 

innovations and negative for catastrophes. Finally, various comparative static results 

k

k
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via partial differential can be obtained from Equation (7):  

 F F
W W

∂
=

∂
,  (8) 

 ( 2
1

N
n

F E Q
r λ

∂
=

∂
)×Ψ ,  (9) 

 F Fτ
ρ

∂
= − ×

∂
,  (10) 

 ( )1kn
N m

NF E
λ τ

ρ λ
τ τ

−−∂ ⎛ ⎞ e F⎡ ⎤= ×Ψ + − + −⎜ ⎟ ⎣ ⎦∂ ⎝ ⎠
, (11) 

 n m
N

n n n

N rF E
r

λ τ λ
λ λ λ

⎛ ⎞ ⎛− +∂ ∂
= ×Ψ −⎜ ⎟ ⎜⎜ ⎟ ⎜∂ ∂⎝ ⎠ ⎝

k F⎞
⎟⎟
⎠

, (12) 

 ( )1k

m n

F ke F
r

τ
λ λ

−∂
= − + ×

∂ ∂
F∂ , (13) 

 mk
m

n

F Fe F
k r

λ
λ τ

λ
−∂ ∂

= − + ×
∂ ∂

,  (14) 

and 

 ( ) (2 3 3N n
F FE Q Q E Q
V r

λ∂ ∂
= − Ψ = −⎡ ⎤⎣ ⎦∂ ∂

)N Ψ . (15) 

Just as in the cost of carry model, Equations (8), (9), and (10) show that , the 

general-equilibrium price of index futures is positively correlated with the stock index 

 and interest rate , and negatively correlated with the time preference parameter 

or dividend yield 

F

W r

ρ . From Equation (11), however, the length of time to maturity τ  

is not necessarily positively correlated with the futures price because of the 

indeterminate combined effect of the time preference parameter ρ , regular and 

irregular information intensities nλ  and mλ , and the expected impulse effect k. 

Similarly, partial effects resulted from the regular, irregular information arrival 
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intensities, nλ  and mλ , and the expected impulse effect k are complicated with 

relationships among themselves, the length of time to maturity τ , and the sensitivity 

of futures price to interest rate F
r

∂
∂

 in Equations (12), (13), and (14).  

On the other hand, the relationship between the stock index futures price and the 

regular volatility V depends on the relative size of  and  in Equation 2Q 3Q (15). 

Note that  and  are related to the growth and variability features respectively 

in the physical production process or Equation 

2Q 3Q

(3). The two variables affect 

equilibrium futures price in opposite directions since κ  and ν  are negatively 

proportional to  and  and thus the relative bounded degree of the growth 

feature to the variability feature affects the impact from regular volatility V.

2Q 3Q

11 Also 

note that the sensitivity of futures price to interest rate, which is governed by  

plays an non-trivial role because futures price is affected by the impulse effect, regular, 

and irregular information intensities through their interactions with the equilibrium 

interest rate. 

2Q

 

B. Simulation Results 

Market participants may perceive the outlooks of economies including the growth and 

variability features, but they can not identify the underlying factors. Thus, we 

categorize economies by different underlying factors including the regular and 

irregular information intensities and mean-reverting speeds of state variables. 

Simulation results are provided to help clarifying relationships between key variables 

and explaining the cause of differential outcomes in economies with identical 

                                                 
11 That is, a larger a (or ) and a larger f (or κ ν ) guarantee more converging strengths of X to b and Y 
to g, which resemble economic bounded degrees of the growth trend and variability feature in the 
production process dp. 

 16



outlooks. 

Specifically, the stock index dynamics can be stated as in Equation (16).12 For an 

illustration purpose, the perceived growth and variability features are defined and 

dichotomized by the levels of ( ), ,W X n tμ  and ( ), ,W Y n tσ , and the regular and 

irregular information intensities are dichotomized by the levels of nλ  and mλ . The 

cases a > f and a < f are taken into consideration as well, where a and f are the 

mean-reverting speed parameters of state variables X and Y in Equation (2). On 

controlling  and κ ν  or  and  in Equation 2Q 3Q (15), a > f implies that the 

growth dynamic is more stable or more adhered to its long-term mean than the 

variability dynamics in the production process.  

 ( ) ( ) ( ), , , ,W W p t
dW X n t dt Y n t d z k d m
W

μ σ= + + . (16) 

Quantitative definitions of the key features are presented in Table 1. Other 

parameter settings for each economy are detailed in Table 2. The coding rule for each 

economy in Table 2 corresponds to the first four fundamental features defined in 

Table 1. For instance, the HLHL economy is with a “High” growth feature 

( 0.4%Wμ = ), a “Low” variability feature ( 0.1%Wσ = ), a “High” regular information 

intensity ( 80%nλ = ), and a “Low” occurrence probability of jump events 

( 0%mλ = ). Note that some parameters are designated to have same growth and 

variability features perceived by agents for each economy. For example, both growth 

                                                 
12  Equation (16) is identical to Equation (3) when ( ), ,W Y n tσ  is defined to be ( )p nV d z  and 

when ( ), ,W X n tμ  is defined to be ( )mX dn k dtμ λ ρ⎡ ⎤− +⎣ ⎦ . 
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and variability features in the stock index dynamics of the HHHH and the HHLL 

economies are the same ( HHHH
Wμ = HHLL

Wμ = 0.4% and HHHH
Wσ = HHLL

Wσ = 0.2%). 

However, given different levels of regular and irregular information intensities 

( HHHH
nλ = 80% ≠ HHLL

nλ = 40% and HHHH
mλ = 1% ≠ HHLL

mλ = 0%), the tallied or implied 

parameters may vary markedly, e.g. HHHHμ = 0.0250% ≠ HHLLμ = 0.1000%. 

Moreover, Table 3 summarizes the signs of the partial derivatives of futures price 

by conducting a 100-period simulation with 10,000 paths for each economy. Note that 

the numbers in parentheses denote the turning points of length of time to maturity or 

nearness, at which the directions of relationships between futures price and other key 

variables are reversed for each case. For example, futures price is negatively related 

with regular information intensity when the contract is to be due in four periods in 

Economy LHHL given the a > f case. However, the negative relationship changes to 

be positive when the nearness of the futures contract is greater or equal to five periods.  

Also note that the relationships between futures price and nλ , mλ , or k are more 

consistent in economies with same levels of regular and irregular information 

intensities (**HH, **HL, **LH, or **LL) and same relative level of mean-reverting 

speed (a > f or a < f ) than those are only in common in levels of growth and 

variability features (HH**, HL**, LH**, or LL**). Thus, categorization by the levels 

of regular-, irregular information intensity, and relative mean-reverting speed 
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performs better in discerning economic phenomena than the categorization by the 

growth and variability features only. 

Table 1 Quantitative Definition of the Primary Features 

Primary Features High Low 

  Growth feature ( μW ) 0.40% 0.30% 

  Variability feature ( σW ) 0.20% 0.10% 

  Regular information intensity ( λn ) 80.00% 40.00% 

  Irregular information intensity ( λm ) 1.00% 0.00% 

  Mean-reverting speed of growth feature ( a ) 90.00% 60.00% 
  Mean-reverting speed of variability feature ( f ) 60.00% 90.00% 

 

Table 2 Parameter Settings across Different Economies 

Abbreviations for 
the Features of 

Economies  
μ σ 

 Abbreviations for 
the Features of 

Economies  
μ σ 

 Tallied parameters to keep the same growth and variability features 

HHHH 0.0250% 0.0632% LHHH 0.0125% 0.0632%

HHLH 0.0500% 0.0632% LHLH 0.0250% 0.0632%

HHHL 0.0500% 0.0632% LHHL 0.0375% 0.0632%

HHLL 0.1000% 0.0632% LHLL 0.0750% 0.0632%

HLHH 0.0250% 0.0316% LLHH 0.0125% 0.0316%

HLLH 0.0500% 0.0316% LLLH 0.0250% 0.0316%

HLHL 0.0500% 0.0316% LLHL 0.0375% 0.0316%

HLLL 0.1000% 0.0316% LLLL 0.0750% 0.0316%

Common parameter settings  

 b  c  g  h τ k ρ X0 Y0 W0

10 1.50% 10 1.50% 100 -20% 0 10 10 1,000
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Table 3 Simulated Signs of Partial Derivatives of Futures Price with Respect to 
the Exogenous Variables Corresponding to Various Features 

τ V λn λm k τ V λn λm k

– (≤1)
+

– (≤1)
+

– (≤4)
+

– (≤3)
+

– (≤3) – (≤3) – (≤2) – (≤6) + (≤5)
+ + – + –

– (≤3) – (≤3) + (≤2) – (≤6) + (≤5)
+ + – + –

– (≤3) + (≤2) – (≤6) + (≤5)
+ – + –

– (≤3) + (≤2) – (≤6) + (≤5)
+ – + –

– (≤3) – (≤7) – (≤6)
+ + +

– (≤3) – (≤7) – (≤6)
+ + +

– (≤3) – (≤19) – (≤6)
+ + +

– (≤3) – (≤19) – (≤6)
+ + +

n.a. – + n.a.LLLL + – +

n.a.

LLLH + – – – + –

– + –

LLHL – – + n.a. – +

+ – – +LLHH – – –

n.a. + + n.a.LHLL + – +

n.a.

LHLH + – – – + –

– +

– + –

LHHL – – + n.a. – +

+ – – +LHHH – – –

n.a. + + n.a.HLLL + – +

+ n.a.

HLLH + – + + –

– +

– + –

HLHL + – + n.a. – +

+ – – +HLHH + – –

n.a. – + n.a.HHLL + – +

– + n.a

HHLH + – + + –

–

– + –

HHHL + – + n.a. – +

+ – – +HHHH + – –

Categorized by Regular and Irregular Information Intensities

a  > f a  < f

.

 
Note: “n.a.” results from the “Low irregular information intensity” feature ( 0%mλ = ). The number 

in parentheses denotes the length of time to maturity, namely, the nearness of a futures contract, 
at which the sign of a partial derivatives happens to change. 
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The categorization by different features helps explain why different phenomena 

appear in economies with a similar outlook. A related issue is whether the contango or 

the backwardation pattern prevails.13 According to the simulated relationship of 

futures prices F versus length of time to maturity τ  in Table 3, even though 

economies are equipped with identical growth and variability features (HH**, HL**, 

LH**, or LL**), no clear-cut answer can be obtained without further discerning their 

relative mean-reverting speed of the growth and variability dynamics (a > f or a < f) 

and the impacts of the regular and irregular information intensities ( nλ  and mλ ). 

Another related issue is how volatility affects futures price. Hemler and 

Longstaff (1991) find that market volatility affects futures prices in different 

directions across futures contracts with different lengths of maturity. While Chen, 

Cuny, and Haugen (1995) argue that due to increasing hedge demands and short 

positions for fear of the bear market, volatility should be negatively related to the 

futures price. According to our Table 3, the effect on futures price from the variability 

feature V primarily depends on the relative mean-reverting speed of the growth and 

variability dynamics, and remains monotonic given different fundamental features and 

lengths of time to maturity. Moreover, the result is robust with respect to various 

levels of a and f. If a is greater than f, then the growth dynamics is relatively stable 

and V and F are negatively correlated, which is consistent with Chen, et al. (1995). In 

contrast, if a is less than f, then the growth dynamics is relatively volatile and V and F 

are positively correlated. Since a more volatile underlying asset dynamics suggests a 

larger probability of extreme spot prices, we conjecture that in markets full of 

                                                 
13   The phenomenon "contango" occurs when futures price is greater than spot price, and 
“backwardation” occurs when futures price is less than spot price, whereas “normal backwardation” 
occurs when futures price at current time is smaller than the “expected” spot price at expired date. The 
terminologies were defined by Keynes and used by Hicks (1946) latter. Because of the log utility and 
frictionless assumption in our model, the current time futures price equals the expected spot price at 
the expiry time. Thus, we focus on the contango and backwardation phenomena.  
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sentiments or mis-reaction on the growth perspective, the reported correlation 

between futures price and regular volatility are more likely to be positive. 

 

IV  Conclusion 

This paper is among one of the studies motivated by the documented tail-fatness and 

leptokurtic observed in asset returns. The special features of this study are as follows. 

First, we take into account not only the regular but also the irregular stochastic 

volatility in explaining the futures price. Second, we apply the information-time 

setting to control the synchronic variation between the growth and variability features 

of an economy. Decomposing factors such as regular-, irregular information intensity, 

and mean-reverting speed further help to explain why correlation coefficients among 

key variables may differ in sign or magnitude even when the stock index dynamics of 

different economies looks alike. Unveiling these factors concealed in identical growth 

and variability features reconciles discrepancies about relationships among prices and 

volatility in futures and cash markets in literature. 

 

Appendix A — Proof of Equation (6) 

The dynamics of the representative agent’s wealth W can be stated in details as: 
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Note that the occurrences of consumption and interest income from the riskless 

position are based on the calendar-time instead of the information-time spans. That is, 

the instantaneous consumption and interest occur whether or not an information 

arrival does happen in that time span. On the other hand, we can obtain the dynamics 

of the agent’s expected lifetime value function ( )E J  by Itô lemma: 
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Applying both first-order conditions ( 0
ip F

w w
∂Λ ∂Λ

= =
∂ ∂

) and market clearing 

conditions (  and ), we can obtain Equations 1pw = 0,iF
w = ∀i (3) and (4). Equation 

(6) can also be obtained after tedious algebraic manipulations. 

 

Appendix B — Proof of Equation (7) 

We assume that the analytic form of futures pricing is multiplicatively separable and 

can be stated as: 

( ) ( ) ( ) ( ) ( ), , , , , ,B X C YF W X Y m t W A e T tτ ττ τ τ τ+= ≡ − . 

It is straightforward to show that the trail solution satisfies Equation (6). Substituting 

the trail solution into the partial differential equation, we obtain the three following 

sub-equations: 

( ) ( ) ( )0 , B-1n n m

A
a b B f g C k

A
τ λ λ λ− − + =  
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( ) ( )2 21 0 , B-2
2n n nB a B c Bτ λ λ λ μ⎛ ⎞+ − − =⎜ ⎟

⎝ ⎠
 

and 

( ) ( )2 2 21 0 . B-3
2n n nC f C h Cτ λ λ λ σ⎛ ⎞+ − + =⎜ ⎟

⎝ ⎠
 

Note that (B-2) and (B-3) are in the form of Ricatti equation and that A and B may be 

solved in their closed forms: 

( ) 2 2
2 1

, 2
1 1

N

N N

e
B a

a e e

κ

κ κ

μ
cτ κ μ

κ

⎡ ⎤− +⎣ ⎦= =
⎡ ⎤ ⎡ ⎤− + + +⎣ ⎦ ⎣ ⎦

− , 

and 
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2

2 2
2 1

, 2
1 1

N

N N

e
C f

f e e

ν

ν ν

σ
τ ν

ν
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2hσ+ . 

Then (B-1) is readily to be solved as well: 

( ) ( )

( ) ( )

( ) ( )

2 2

2
2

2 2

4
2

4
2

2

2 .

a b
a b aNk M a

N

f g
f g fN

f
N

A e e
a e a

e
f e f

μ
μ κ

ρ τ κ
κ

σ
σ ν
ν

ν

κτ
κ κ

ν
ν ν

−
− − −

− +
− +

⎧ ⎫
⎡ ⎤⎪ ⎪= × ⎢ ⎥⎨ ⎬
− + + +⎢ ⎥⎪ ⎪⎣ ⎦

⎩ ⎭
⎧ ⎫

⎡ ⎤⎪ ⎪
× ⎢ ⎥⎨ ⎬

− + + +⎢ ⎥⎪ ⎪⎣ ⎦
⎩ ⎭

 

We can then apply Equations (4) and (5) to transform the solution 

( ) ( ) ( ) ( )B X C YW A e τ ττ τ +  into Equation (7). Substituting 0τ =  into Equation (7) 

satisfies the boundary condition ( ) ( )F T W T=  at contract expiration date T. On the 

other hand, If M and N are non-stochastic with 0mλ =  and 1nλ = , then Equation 

(7) degenerates to the setting in Hemler and Longstaff (1991). Moreover, when not 

only M and N but also state variables X and Y are non-stochastic, the equilibrium 

interest rate r and market volatility V become constants and the setting degenerates 
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into the cost of carry model. 

References 

Amin, K. I., and V. Ng, 1993, Option valuation with systematic stochastic volatility, 
Journal of Finance 48, 881-910. 

Bakshi, G., Cao, C., and Z. Chen, 1997, Empirical performance of alternative option 
pricing models, Journal of Finance 52, 2003-2049. 

Bates, D., 1991, The crash of 87: Was it expected? The evidence from options markets, 
Journal of Finance 46, 1009-1004. 

Bates, D., 1996, Jumps and stochastic volatility: exchange rate processes implicit in 
deutsche mark options, Review of Financial Studies 9, 69-107. 

Bates, D., 2000, Post-’87 crash fears in S&P 500 futures options, Journal of 
Econometrics 94, 181-238. 

Black, F. and M. Scholes, 1973, The pricing of options and corporate liabilities, 
Journal of Political Economy 81, 637-659. 

Blattberg, R. C. and N. J. Gonedes, 1974, A comparison of the stable and student 
distributions as statistical model for stock prices, Journal of Business 47, 244-280. 

Chang, C. W., Jack, S. K. Chang, and K. G. Lim, 1998, Information-time option 
pricing: theory and empirical evidence, Journal of Financial Economics 48, 211-242. 

Chen, N., Cuny, C. J., and R. A. Haugen, 1995, Stock volatility and the levels of the 
basis and open interest in futures contracts, Journal of Finance 50, 281-300. 

Clark, P. K., 1973, A subordinated stochastic process model with finite variance for 
speculative prices, Econometrica 41, 135-155. 

Cox, J. C. and S. A. Ross, 1976, The valuation of options for alternative stochastic 
process, Journal of Financial Economics 3, 145-166. 

Cox, J. C., Ingersoll, J. E., and S. A. Ross, 1981, The relation between forward prices 
and futures prices, Journal of Financial Economics 9, 321-346. 

Cox, J. C., Ingersoll, J. E., and S. A. Ross, 1985, An intertemporal general equilibrium 
model of asset prices, Econometrica 53, 363-384. 

Chesney, M. and L. Scott, 1989, Pricing European currency options: A comparison of 

 26



the modified Black–Scholes model and a random variance model, Journal of 
Financial and Quantitative Analysis 24, 267-284. 

Duffie, D., Pan, J. and K. Singleton, 2000, Transform analysis and asset pricing for 
affine jump diffusion, Econometrica 68, 1343-1376. 

Eraker, B., 2004, Do stock prices and volatility jump? Reconciling evidence from spot 
and option prices, Journal of Finance 59, 1367-1403.  

Eraker, B., Johannes, M. S., and N. G.. Polson, 2003, The impact of jumps in returns 
and volatility, Journal of Finance 53, 1269–1300. 

Fama, E., 1965, The Behavior of Stock Prices, Journal of Business 47, 244-280. 

Hemler, M. L. and F. A. Longstaff (1991), General equilibrium stock index futures 
prices: Theory and empirical evidence, Journal of Financial and Quantitative 
Analysis 26, 287-308. 

Heston, S., 1993, A closed-form solution for options with stochastic volatility with 
applications to bond and currency options, Review of Financial Studies 6, 327-343. 

Hicks, J. R., 1946, Value and capital, Clarendon Press, Oxford, second edition. 

Hilliard, J. E. and J. Reis, 1998, Valuation of commodity futures and options under 
stochastic convenience yields, interest rates, and jump diffusions in the spot, Journal 
of Financial and Quantitative Analysis 33, 61-86. 

Hull, J. and A. White, 1987, The pricing of options on assets with stochastic 
volatilities, Journal of Finance 42, 281-300. 

Jarrow, R. and G. Oldfield, 1981, Forward contracts and futures contracts, Journal of 
Financial Economics 9, 373-382. 

Jorion, P., 1988, On jump processes in the foreign exchange and stock markets, 
Review of Financial Studies 1, 427-445. 

Kon, S. J., 1984, Models of stock returns: A Comparison, Journal of Finance 39, 
147-166. 

Liu, J., Longstaff, F. A., and J. Pan 2003, Dynamic asset allocation with event risk, 
Journal of Finance 58, 231-259. 

Melino, A. and S. M. Thornbull, 1990, Pricing foreign currency options with 
systematic stochastic volatility, Journal of Econometrics 45, 239-265. 

Merton, R. C., 1976, Option pricing when underlying stock returns are discontinuous, 

 27



Journal of Financial Economics 3, 125-144. 

Naik, V. and M. Lee, 1990, General equilibrium pricing of options on the market 
portfolio with discontinuous returns, Review of Financial Studies 3, 493-521. 

Pan, J., 2002, The jump-risk premia implicit in options: Evidence from an integrated 
time-series study, Journal of Financial Economics 63, 3-50. 

Paretz, P., 1972, The distributions of share price changes, Journal of Business 45, 
49-55. 

Richard, S. F. and M. Sundaresan, 1981, A continuous time equilibrium model of 
forward prices and futures prices in a multigood economy, Journal of Financial 
Economics 9, 347-371. 

Scott, L. O., 1997, Pricing stock options in a jump-diffusion model with stochastic 
volatility and interest rates: Applications of Fourier inversion methods, Mathematical 
Finance 7, 413-428. 

Shiller, R. J., 2002, Bubbles, human judgment, and expert opinion, Financial Analysts 
Journal 58, 18-26. 

Stein, E. M., and J. C. Stein, 1991, Stock price distributions with stochastic volatility: 
an analytic approach, Review of Financial Studies 4, 727-752. 

Wiggins, J. B., 1987, Option values under stochastic volatility: Theory and empirical 
estimates, Journal of Financial Economics 19, 351-372. 

 

 28


