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Abstract 

The intertemporal investment-consumption technique is applied to investigate 

the optimal consumption and dynamic option-based portfolio insurance strategy when 

there is predictable variation in return volatility. An optimal dynamic option-based 

portfolio insurance strategy is shown to be separable into a myopic component and an 

intertemporal hedging component. The intertemporal hedging demand is further 

separated into three effects. The correlation effect results in a conservative investor 

having a negative position on the intertemporal hedging demand of the option-based 

portfolio insurance strategy. However, there are two other positive effects in the 

intertemporal hedging component for the option-based portfolio insurance:  the delta 

effect and the vega effect. Incorporating options’ considerations in portfolio decisions 

to create a dynamic option-based portfolio insurance strategy improves the hedging 

ability in the intertemporal hedging component, especially in down markets. 
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1. INTRODUCTION 

In a world of uncertainty, steps are taken to offset or at least reduce the chance of loss or failure. 

In the modern financial market, a wide range of portfolio insurance strategies is available to 

investors or fund managers for this aim. Portfolio insurance strategies are appropriate for 

investors who need to limit downside risk and desire to participate in upside potential. Various 

portfolio insurance models are given in both the academic and professional literature. Among 

them, the two main and most popular strategies implementing portfolio insurance are the 

Option-Based Portfolio Insurance (OBPI) and the Cushion method (also known as the 

Constant Proportion Portfolio Insurance, or CPPI, method). Both methods are designed to 

guarantee that the portfolio’s current value dominates the discounted value of a pre-specified 

floor. 

The CPPI was introduced by Perold (1986) and Perlod and Sharpe (1988) and has been 

further developed and explored by Black and Jones (1987), Black and Rouhani (1989), and 

Black and Perold (1992). The CPPI strategy basically buys shares as they rise and sells shares 

as they fall. This method is a dynamic strategy in which the investor starts choosing the 

lowest acceptable value of the portfolio (usually called the floor, which is the function of the 

investor’s preference and risk tolerance). If we think of the difference between the assets and 

floor as a “cushion”, then the investor shall maintain the portfolio’s risk exposure at a constant 

multiple of the cushion, i.e. the excess of wealth over the floor (Black and Rouhani, 1989 and 

Black and Perold, 1992). 

Another strategy is the OBPI, pioneered by Leland and Rubinstein (1976), consisting 

basically of simultaneously buying the risky asset or stock and a traded or synthetic put 

written on it. For instance, a portfolio insurer might buy a put option on a stock index, giving 

him the right to sell the index at a predetermined price. If the index falls below that price in 

the future, then the insurer could exercise or sell the put with a profit, which would 

compensate for the reduced value of the insurer holding stock. On the other hand, if the stock 

rises, then all the insurer loses is the premium for the put, while enjoying the rise in the value 
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of the stock held.  

This paper mainly aims to provide an investment strategy for one special kind of investor, 

portfolio insurers, such as some institutional investors. This kind of investment strategy is 

called portfolio insurance strategy. This kind of investor will and should build together 

options and stocks in a single portfolio, in which the single portfolio is just called portfolio 

insurance.  

Leland (1980) concludes that two kinds of investors wish to obtain portfolio insurance. 

The first kind of investor has average expectations, but the risk tolerance increases with 

wealth more rapidly than average. The second kind of investor has average risk tolerance, but 

the expectations of returns are more optimistic than average. Purchasing portfolio insurance is 

equivalent to holding a reference portfolio and buying a put option on the portfolio. Therefore, 

the definition of portfolio insurance is:  a strategy of hedging a stock portfolio against 

market risk by selling stock index futures short or buying stock index put options.  

Portfolio insurance is equivalent to a securities position comprised of an underlying 

portfolio plus an insurance policy that guarantees the portfolio against loss through a specified 

policy expiration date (Rubinstein, 1985). Leland and Rubinstein (1976) introduced the 

Option Based Portfolio Insurance (OBPI), which is one of the more popular and widely-used 

strategies of portfolio insurance by portfolio insurers such as mutual funds or pension funds. 

It consists basically of “buying simultaneously a stock (generally a financial index) and a put 

written on it”. The value of this portfolio at maturity is always greater than the strike of the 

put, whatever the market fluctuations are. The purpose of portfolio insurance is to insure a 

minimum value for a stock portfolio in a falling market, while also allowing for participation 

in a rising market. For instance, a portfolio insurer might simultaneously buy a share of a 

stock index portfolio, like S&P500, and a put option written on the S&P 500, giving him the 

right to sell the index at a predetermined level. If the index falls below that level, then the 

insurer exercises or sells the put. The profit on the put offsets the decline in the value of the 

stocks the insurer holds. If stocks in the index rise, the insurer loses what he paid for the put. 
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Therefore, this kind of investor, a portfolio insurer, must build together options and stocks in a 

single portfolio.  From this basic issue, the paper further discusses and explores the optimal 

dynamic option-based portfolio insurance strategy with stochastic volatility. In this paper we 

apply the intertemporal investment-consumption technique to discuss and explore the optimal 

dynamic option-based portfolio insurance strategy with stochastic volatility. More specifically, 

what we try to do in this paper that differs from the OBPI literature consists of the following 

parts.  

First, the traditional option-based portfolio insurance strategy has both of the following 

goals:  to protect the portfolio value “at maturity” and to take advantage of rises in the 

underlying “tactical allocation”. As analyzed in this paper, we allow our model to get the 

optimal dynamic option-based portfolio insurance strategy at any time instead of just to 

guarantee a fixed amount only at the terminal date. This paper sets up a model in which a 

long-term investor chooses an optional dynamic option-based portfolio insurance strategy by 

maximizing a utility function defined over intermediate consumption rather than terminal 

wealth. The abstraction from the choice of consumption over time implies that investors value 

only wealth at a single terminal date, i.e. no consumption takes place before the terminal date, 

and all portfolio returns are reinvested until that date (Campbell and Viceira, 1999). In 

addition, the assumption that investors derive utility only from terminal wealth and not from 

intermediate consumption will simplify the analysis by avoiding an additional source of 

non-linearity in the differential equation. However, many long-term investors desire to seek a 

stable consumption path over a long horizon. This simplification makes it hard to apply the 

model to the realistic problem facing an investor saving for the future. Very often, 

intermediate consumption can be used as an indicator of marginal utility, especially in the 

asset pricing related literature (Campbell and Viceira, 1999).  

We know that the second goal of the option-based portfolio insurance is to take advantage 

of rises in the underlying “tactical allocation”. The definition of tactical asset allocation 

strategies is essentially single-period or myopic asset allocation strategies which assume that 
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the decision maker has a mean-variance criterion defined over the one-period rate of return on 

the portfolio (Brennan, Schwartz and Lagnado, 1997). However, a multi-period dynamic asset 

allocation is more reasonable and realistic than tactical asset allocation strategies for 

long-horizon investors. Merton (1971, 1973) shows that when investment opportunities are 

time-varying, dynamic hedging is necessary for forward-looking investors. Multi-period or 

long-horizon investors are concerned not only with expected returns and risk today, but with 

ways in which expected returns and risk may change over time. Dynamic asset allocation 

strategies for multi-period or long-horizon investors differ from those of single-period 

investors, because the former demand risky assets not only for their risk premia, but also for 

their hedging ability on consumption against adverse changes in future investment 

opportunities. Merton is the first to consider the effect of a stochastic investment opportunity 

set in the analysis of optimal asset allocation strategies for long-horizon investors. Merton 

(1969, 1971, 1973) shows that if investment opportunities are varying overtime, then 

long-horizon investors generally care about shocks to investment opportunities and not just 

about wealth itself. They may seek to hedge their exposures to wealth shocks, and this creates 

intertemporal hedging demand for financial assets (Campbell, 2000).  

In this paper we choose the intertemporal model to discuss the more general hedging 

needs of the long-term investor. The application of the intertemporal investment model 

(Merton, 1971) to the problem of portfolio insurance is the “strategic asset allocation” instead 

of “tactical asset allocation”. The strategic asset allocation also allows investors to obtain 

growth, while limiting the chances of huge losses. While there is an abundant amount of 

literature exploring intertemporal strategic asset allocation, there is not much research 

exploring the intertemporal option-based portfolio insurance strategy. Because of time 

variation in investment opportunities, multi-period investors have an extra demand for 

financial assets (stocks or bonds) that reflect intertemporal hedging. That intertemporal 

hedging component of the optional portfolio strategies for multi-period investors is the major 

difference from those of single period investors. We also know that the intertemporal hedging 

component of the risky financial assets depends on the instantaneous correlation between the 
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risky asset returns and state variable, implying that if shocks to expected returns are 

instantaneously perfectly correlated with shocks to realized returns or, equivalently, that 

markets are complete, then the intertemporal hedging component of the risky asset can be 

provided perfectly, or there is full hedging ability for multi-period investors (Schroder and 

Skiadas, 1999, Wachter, 2002 and Brennan and Xia, 2002).  

If we allow for imperfect instantaneous correlation between risky asset returns and the 

state variable in our model, then the intertemporal hedging component of the risky asset can 

only provide partial hedging ability for multi-period investors when facing the time-varying 

investment opportunity set. In addition, the best portfolio insurance strategies should be found 

by solving for the intertemporal investment-consumption rules that maximize expected utility 

(Black and Perold, 1992). At this time, we can introduce (enough) non-redundant derivatives 

in the incomplete financial market to create the option-based portfolio insurance strategies as 

shown in our model. The intertemporal option-based portfolio insurance strategy can 

supplement the deficient hedging ability of the intertemporal hedging compound of the risky 

stock, because of the non-linear nature of derivatives.  

If asset returns or volatility are time-varying, then this again implies that investment 

opportunities are time-varying, too, and an intertemporal model is needed to find the optimal 

asset allocation (Campbell, 2000). Intertemporal hedging and asset allocation are 

quantitatively important in light of the observed predictable variation in volatility as seen in 

Lynch and Balduzzi (2000), Barberis (2000), Brandt (1999), Brennan, Schwartz and Lagnado 

(1997), Campbell and Viceira (1999, 2001), Campbell, Chan and Viceira (2003) and Chacko 

and Viceira (2005). In this paper we incorporate, in addition to the usual diffusive price shock, 

stochastic volatilities that are important in characterizing the stock market to our option-based 

portfolio insurance strategy model. We also allow for imperfect instantaneous correlation 

between the price and volatility shocks－a feature that is important in the data. The 

option-based portfolio insurance strategy model is necessary and important to complete the 

market with respect to volatility risk. 

In this generalized intertemporal model under the stochastic environment, Merton’s 
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approach (1971, 1973) could not be used to derive a closed-form solution by solving a 

non-linear differential equation on the intertemporal hedging portfolio. Recently, some studies 

in the literature have begun to work on it, such as the approximate analytical solutions 

developed by Campbell and Viceira (2001), Kogan and Uppal (2001), and Chacko and Viceira 

(2005). These solutions are based on perturbations of known exact solutions. They offer 

analytical insights into investor behavior in models that fall outside the still limited class that 

can be solved exactly (Campbell, 2000). In this paper we use perturbation methods to get 

linear approximate solutions. We mainly derive the explicit solution on a log-linear expansion 

of the consumption-wealth ratio around its unconditional mean provided by Campbell (1993), 

Campbell and Viceira (1999, 2001 and 2002) and Chacko and Viceira (2005). 

This paper is organized as follows. Section 2 describes the model used and environment 

assumed in this paper. Section 3 develops the model of optimal dynamic option-based 

portfolio insurance strategies with stochastic volatility. Section 4 provides analyses of the 

optimal dynamic option-based portfolio insurance strategy. Finally, conclusions are given in 

Section 5. 

2.  THE MODEL 

2.1  Investment opportunity set 

This paper assumes that the portfolio insurer invests wealth in traded assets only. There are 

two prime assets available for trading in the economy. One of the assets is a riskless money 

market fund, denoted by  with a constant interest rate of tB r . Its instantaneous return is:  

rdt
B

dB

t

t = .                                                    (1) 

The short rate is assumed to be constant in order to focus on the stochastic volatility of the 

risky asset. The second prime asset is a risky stock that represents the aggregate equity market. 

Here,  denotes the price of the risky financial asset at time t, and its instantaneous total 

return dynamics is given by:  

tS
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t

t dZVdt
S

dS
+=  μ ,                                           (2) 

tVμ  is the instantaneous expected rate of return on the risky stock, and where  is the 

time-varying instantaneous standard deviation of the return on the risky asset. We denote 

stochastic variables with a subscript “t” and let the conditional variance of the risky stock 

vary stochastically over time.  

From the following setting, the investment opportunity is time-varying. We assume that 

the instantaneous variance process is:  

vttt dZVdtVdV σθκ +−= )( ,                                    (3) 

where the parameter 0>θ , which describes the long-term mean of the variance, and 

)1 ,0(∈κ  is the reversion parameter of the instantaneous variance process - i.e. this 

parameter describes the degree of mean reversion. Here,  and  are two Wiener 

processes with constant correlation 

SdZ vdZ

ρ . We assume that the stock returns are correlated with 

changes in volatility with instantaneous correlation ρ , which may be assumed to be negative 

to capture the leverage effect or the asymmetric effect (Glosten et al., 1993). The negative 

correlation assumption with the mean-reversion on stock returns volatility can capture two of 

the most important features discussed in the empirical literature on the equity market. 

In the traditional theory of derivative pricing (Black and Scholes, 1973 and Merton, 1973), 

derivative assets like options are viewed as redundant securities, for which the payoffs can be 

replicated by portfolios of primary assets. Thus, the market is generally assumed to be 

complete without the options. In this paper we introduce derivatives that allow the investor to 

include it in her dynamic asset allocation strategies to create option-based portfolio insurance. 

If only a risky stock and a riskless bond are available for trading, then the financial market is 

incomplete. This is from our setting that stock returns are not instantaneously perfectly 

correlated with their time-varying volatility. This paper set the derivatives written on the stock 

as a non-redundant asset. For our setting, the derivatives can provide differential exposure to 

the imperfect instantaneous correlation between volatility and stock returns, and they can 
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make the market complete. 

Following from Liu and Pan (2003), this paper provides a specific pricing kernel to price 

all of the risk factors in this economy and consequently the put options. The particular 

specification of the derivatives that complete the market is linked uniquely to a pricing kernel 

{ Tt ≤≤ t0 , }π [ ),(1
τττππ

VSpEP t
t

t = ] such that , for any τ≤t ; where τ  is the time to 

expiration for the derivative security. In accordance with Liu and Pan (2003) we start with the 

following parametric pricing kernel, [ ]vtsttt dZVdZVrrdtd λμππ +−+−= )( , where 

10 =π λ)( r−μ and the constant coefficient  and  control the premium for the diffusive 

price risk and the stochastic volatility risk.  

Following from Sircar and Papanicolaou (1999), Liu and Pan (2003), and from this 

pricing kernel, and under the above setting, the non-redundant put option ( ) 

which is the function ( ) on the prices of the stock ( ) and on the volatility of stock returns 

( ) at time  will have the following parametric specification of the price dynamics for the 

put options: 

),( ttt VSpP =

tSp

ttV

vvtsstttvstt dZpVdZpSdtrPppSrdP σλσμ ++++−= V ])[( .         (4) 

λ 0<spwhere  determines the stochastic volatility risk premium, and  and  are 

measures of the put option’s price sensitivity to small changes in the underlying stock price 

and volatility, respectively. 

0>vp

The option-based portfolio insurance method consists basically of purchasing 

simultaneously  shares of the risky stock ( ) and  shares of put options written on the 

stock with the non-linear payoff structure  for some strike price 

 at 

tq tS tq

+−= )(),( τττ SKVSp

0>K τ<t . Thus, the dynamics of the portfolio value under option-based portfolio 

insurance ( ) would be:  tF
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[ ] [ ] vvtsstttttvsttt dZpVdZpSVSVdtrPppSrSdF σλσμμ +++++−+= )( .     (5) 

2.2 Preferences 

We assume that the investor’s preference is recursive and of the form described by Duffie and 

Epstein (1992). Recursive utility is a generalization of the standard and time-separable power 

utility function that separates the elasticity of intertemporal substitution of consumption from 

the relative risk aversion (Chacko and Viceira, 2005). This means that the power utility is just 

a special case of the recursive utility function when the elasticity of the intertemporal 

substitution is just the inverse of the relative risk aversion coefficient.  

] ),([
 

 
τττ dJCfEJ

tt ∫
∞

= ,                                        (6) 

where  is a normalized aggregator of investor’s current consumption ( ) and 

utility has the following form:  

),( ττ JCf τC

⎥
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γ

ϕ
β

J
CJJCf ,                   (7) 

γ β is the coefficient of relative risk aversion,  is the rate of time preference, and where 

ϕ  is the elasticity of intertemporal substitution - they are all larger than zero.  

eThe investor’s objective is to maximize her xpected lifetime utility by choosing 

consumption and the proportions of her wealth to invest in the option-based portfolio 

insurance subject to the following intertemporal budget constraint: 

dtCrWWr
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⎜⎜
⎝

⎛
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⎠
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⎝

⎛
++ σ         ,                   (8) 

where  represents the investor’s total wealth,  are the fractions of the investor’s 

financial wealth allocated to the option-based portfolio insurance at time t, and  

represents the investor’s instantaneous consumption. 

tW tn

tC
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3. OPTIMAL CONSUMPTION POLICY AND DYNAMIC OPTION-BASED 

PORTFOLIO INSURANCE STRATEGIES  

The main objective of this paper is to explore the optimal option-based portfolio insurance 

strategies. Instead of a single period result, we also want to explore the optimal intertemporal 

consumption with a stochastic investment opportunity set induced by the stochastic volatility.  

3.1 A special case with unit elasticity of intertemporal substitution of consumption  

JThe value function of the problem ( ) is to maximize the investor’s expected lifetime utility. 

The principle of optimality leads to the following Bellman equation for the utility function. 

Under the above setting, the Bellman equation satisfies: 
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where  and  denote the derivatives of WJ .VJ J  with respect to wealth W  and 

stochastic volatility . We will use the similar notation for higher derivatives as well. We 

also note that 

tV

ρ  is the instantaneous correlation between the unexpected return on the stock 

and its stochastic volatility. 

The first-order conditions for the equation are: 

γ
ϕγ

γ
ϕγ

γβ ϕϕ −
−

−
−

−= − 1
1

1
1

)1(JJC Wt ,                                            (10) 

tvtsvtvststt

tvst

tWW

W
t VpSppSppSpSS

FppSr
WJ

Jn
 ])(22[

 ])1()[(
222222 σσρσ

λσμ
+++++

++−
−=

 
 

( )
)(22

        222222
vtsvtvststt

tvstt

tWW

WV

pSppSppSpSS
FppSS

WJ
J

σσρσ
σρρσ

+++++
++

− .            (11) 

 
10



The optimal dynamic option-based portfolio insurance has two major components. In the 

option-based portfolio insurance, its first term is the mean-variance portfolio weight. This is 

for an investor who only invests in a single period horizon or under a constant investment 

opportunity set, the myopic demand. The second term of the optimal dynamic option-based 

portfolio insurance is the intertemporal hedging demand that characterizes demand arising 

from the desire to hedge against changes in the investment opportunity set induced by the 

stochastic volatility. This term is determined by the instantaneous rate of changes in relation 

to the value function. Aside from the partial hedging provided by the stock in the 

intertemporal hedging component, put options also offer additional hedging ability, allowing 

the investor to insure against changes in the stochastic volatility and investment opportunity 

set. 

We will discuss this in more detail later, because the first-order conditions for our problem 

are not explicit solutions unless we know the complicated indirect utility function. 

Substituting the first-order solutions back into the Bellman equation, we get: 

[ ]
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γ

γ

−
=

−

1
)(),(

1
t

ttt
WVIVWJ  when We conjecture that there exists a solution of the functional form 

1=ϕ , and after substituting it into equation (12), the ordinary differential equation will have 

a solution of the form )logexp( 210 tt VQVQQI ++= . Rearranging that equation, we have 

three equations for , , and  after collecting terms in 
tV

1
2Q 1Q 0Q ,  and 1. We provide tV
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the full details in Appendix A. 

We are now able to obtain the indirect utility function and the optimal consumption rule 

and dynamic option-based portfolio insurance strategy when 1=ϕ . The indirect utility 

function is: 

( )
γγ

γγ

−
++=

−
=

−−

1
logexp

1
)(),(

1

210

1
t

tt
t

ttt
WVQVQQWVIVWJ .                       (13) 

The investor’s optimal consumption-wealth ratio and the optimal dynamic option-based 

portfolio insurance strategy are: 

β=
t

t

W
C ,                                                               (14) 
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⎛
++ .     (15) 

For the time being, we defer solving this model since this solution is merely a special case 

of our model setting when 1=ϕ . In the next section we will use perturbation methods to 

find the general solution to our model.  

In fact, a postulated pricing kernel that has been chosen targets to obtain a parametric 

specification of the price dynamics for the put options. Unfortunately, the intertemporal 

consumption and portfolio choice problem is hard to solve in closed form, and this 

multi-period portfolio choice problem sometimes can be solved numerically only. However, 

the result of being without a closed-form solution does not come from the assumption of the 

pricing kernel and the assumption of the price dynamics for the put options, while is a result 

from the more general assumption of the investor’s preference and the time-varying 

investment opportunities. Comparing with the numerical solutions, approximate analytical 

solutions - which are based on perturbations of known exact solutions - can offer economics 

insights into investor behavior in models that fall outside the still limited class that can be 

solved exactly. In other words, we can show directly which factors and how these factors 
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affect the choosing of the optimal dynamic option-based portfolio insurance strategies from 

the analytical solution instead of the numerical solutions. This kind of solution can also offer 

more economics insights into our model. In addition, we will provide a calibration exercise in 

the paper to illustrate the economic results of the paper, and more economics analyses of our 

solution are presented in section 4 for the reader.  

3.2 Approximate closed-form solution by perturbation methods 

The basic idea behind the use of perturbation methods is that of formulating a general 

problem, on the condition that we find a particular case that has a known solution, and then 

using that particular case and its solution as a starting point for computing approximate 

solutions to nearby problems. In many financial economic models, determining the unknown 

function plays a key role in economic analysis under the assumption of a given functional 

form. However, the more generalized the model is, the more difficult it is to find a 

closed-form solution, especially in the case of an intertemporal consumption and portfolio 

choice problem with stochastic non-linear partial differential equations. In spite of this, this 

situation has very recently begun to change as a result of several related developments. One of 

these developments involves the use of perturbation methods in some special cases where 

solutions are derived for computing approximate solutions that will help make economic 

analysis more explicit. These methods offer analytical insights into investor behavior in 

models that fall outside the still-limited class that can be solved exactly (Campbell, 2000). 

Judd and Guu (1997, 2000), Kogan and Uppal (2001), Campbell and Viceira (1999, 2001 

and 2002), and Chacko and Viceira (2005) etc. use this approach to solve dynamic economic 

or financial models. In the remainder of this paper, we apply perturbation methods to solve 

our model. In the context of our problem, the insight we obtain is that the solution for the 

recursive utility function when 1=ϕ  provides a convenient starting point for performing 

the expansion. We apply 1=ϕ  in the previous section as our starting point and compute our 

model around this solution. 

1=ϕWithout the restriction of , the Bellman equation can be expressed as the following 
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equation by substituting equation (10) into equation (12) and conjecturing there exists a 

solution of the functional form 
γ
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non-homogeneous ordinary differential equation: 
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The above equation unfortunately cannot be computed in closed form. Our approach is to 

obtain an asymptotic approximation to equation (17), where the expansion is by taking a 

log-linear expansion of the consumption-wealth ratio around its unconditional mean as shown 

in the papers of Campbell (1993), Campbell and Viceira (1999, 2001 and 2002) and Chacko 

and Viceira (2005). From the transformation ϕ
γ

−
−

−
Φ= 1

1 
)()( tt VVI , we get the envelope 
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condition of the equation (10): 
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We now substitute equation (19) into equation (17) and guess this equation has a solution of 

the form , and from this guessed solution, equation (18) 

can find that:  
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Rearranging the above equation, we have the following three equations for , , and :  0Q̂2Q̂ 1Q̂
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where  can be solved to the quadratic equation (22),  can be solved to equation (23) 

given , and  can be solved to equation (24), given  and . 

2Q̂ 1Q̂

0Q̂2Q̂ 2Q̂ 1Q̂

We can now get the indirect utility function and the optimal consumption rule and the 

optimal dynamic option-based portfolio insurance strategy in the stochastic environment 

without constraint when 1=ϕ . The indirect utility function is: 
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The investor’s optimal instantaneous consumption-wealth ratio is: 

( tt
t

t VQVQQ
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C logˆˆˆ exp 210 −−−= ϕβ ).                                       (26) 

The optimal dynamic option-based portfolio insurance strategy is: 
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Now we have explicitly solved the problem of the dynamic option-based portfolio 

insurance strategy for long-horizon investors with time-varying volatility. In the next section 

we will provide analyses of our results. In addition, we will also show the figure results of the 

calibration exercise in Section 4 and provide more economic explanations of the result. 

4. ANALYSES OF THE OPTIMAL DYNAMIC OPTION-BASED PORTFOLIO   

INSURANCE STRATEGY 

The purpose of this paper is in providing an investment strategy for one special kind of 

investor, portfolio insurers, such as some institutional investors. This kind of investment 

strategy is called portfolio insurance strategy and consists basically of simultaneously buying 

a stock (generally a financial index) and a put written on it. The more general setting of our 

model with time-varying volatility and recursive preference cannot be solved in closed form 

by solving a non-linear differential equation on the intertemporal hedging portfolio. It means 

that there is no exact analytical solution to it.  

We can still find an approximate analytical solution following the methods described in 

Campbell and Viceira (2001), Kogan and Uppal (2001), and Chacko and Viceira (2005). 

These solutions are based on perturbations of known exact solutions. They offer analytical 

insights into investor behavior in models that fall outside the still limited class that can be 

solved exactly (Campbell, 2000). It first finds the known exact solutions - a solution for the 

special case in which the elasticity of substitution ( 1=ϕϕ ) is equal to 1. When , there is an 
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exact analytical solution to our model.   

We do, however, wish to address the general case of our model, where the investor’s 

elasticity of intertemporal substitution of consumption can take any value (including, of 

course, when ϕ  is equal to 1). The general case is economically meaningful for two reasons. 

First, it is empirically relevant, since estimates of ϕ  available from both aggregate data and 

disaggregate data on individual investors suggest that ϕ  diverges from one (Hall 1988, 

Campbell and Mankiw 1989, Campbell 1999, Vissin-Jorgensen 2001). Second, it nests as a 

special case the time-additive power utility case that is standard in the literature, because the 

power utility is just a special case of the recursive utility function when the elasticity of the 

intertemporal substitution parameter is just the inverse of the relative risk aversion coefficient. 

The case when the elasticity of substitution also equals one does not nest power utility unless 

we restrict ourselves to the special case of log utility - where both the elasticity of the 

intertemporal substitution parameter and the inverse of the relative risk aversion coefficient 

are equal to one (Chacko and Viceira (2005).  

The approximate analytical solution to the general problem provides strong economic 

intuition about the nature of the optimal dynamic option-based portfolio insurance choice with 

time-varying risk, and it converges to the exact solution in those special cases when such a 

solution is known. Campbell (1993) and Campbell and Viceira (2002) note that the log-linear 

approximation solution method accurately provides that the log consumption-wealth ratio is 

not too variable around its unconditional mean. For the case when the elasticity of substitution 

equals one, this ratio is constant, and the solution is exact. Chacko and Viceira (2005) show 

that for all other cases, this is reasonably accurate, even for values of the elasticity of 

intertemporal substitution being far from one, which is in line with the findings of Campbell 

(1993), Campbell and Koo (1997), and Campbell et al. (2002) for the case in which risk 

premia and the interest rate vary over time. 

The optimal dynamic option-based portfolio insurance strategy can be separated into two 
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components:  the myopic component and the intertemporal hedging component as equation 

(27) and in Figure 1. First, the dependence of the myopic component is simple. It is an affine 

function of the reciprocal of the time-varying volatility and decreases with the coefficient of 

relative risk aversion. Since volatility is time varying, the myopic component is time varying, 

too. In other words, the myopic component is simply linked to the risk-and-return tradeoff 

associated with the price risk of the portfolio value under the option-based portfolio 

insurance. 

The intertemporal hedging component of the optimal dynamic option-based portfolio 

insurance is an affine function of the reciprocal of the time-varying volatility, with coefficient 

ϕ−1
ˆ

1Q  and ϕ−1
ˆ

2Q . While  is the solution to the quadratic equation (22),  is the solution 

to the equation (23), given ,  is the solution to equation (24), given  and . 

When 

2Q̂ 1Q̂

0Q̂2Q̂ 1Q̂ 2Q̂

1>γ  for the coefficient , equation (22) has two real roots of opposite signs 

according to the quadratic equation theory. The value function 

2Q̂

J  is maximized only with 

the solution associated with the negative root of the discriminant of the quadratic equation 

(22), i.e. the positive root of equation (22). It can immediately be shown that 01
ˆ

2 >−ϕ
Q . 
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Figure 1.  The optimal dynamic OBPI and its components in relation to . γ
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1>demand coming from pure changes in time-varying volatility is positive when γ . We can 

further separate the intertemporal hedging demand into three effects as the second component 

of equation (27) and in Figure 2. First, if we do not introduce any put options to create 

option-based portfolio insurance and instead hold only risky stock, then the intertemporal 

hedging component for the risky stock will consist of only the correlation effect or leverage 

effect ( ρσ ). The intertemporal hedging component of the optimal asset allocation for risky 

stock is affected by the instantaneous correlation between the unexpected return and changes 

in stochastic volatility of the risky stock ( 0ρ ). If <ρ , then the unexpected return on the 

risky asset is low (the market situation is bad), and then the states of the market uncertainty 

will be high. Since 01 >−ϕ

ˆ
2Q 1>γ when , the negative instantaneous correlation between 

unexpected return on the risky stock and its stochastic volatility implies the investor will have 

negative intertemporal hedging demand due to changes solely in the volatility of the risky 

asset, which lacks the hedging ability against an increase in volatility. Similar discussions are 

found in Liu (2001) and Chacko and Viceira (2005). However, in our generalized model the 

consideration of introducing a put option as an option-based portfolio insurance strategy 

complicates the intertemporal hedging component.  
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Figure 2.  The intertemporal hedging demand of the optimal dynamic OBPI and its 

components in relation to . γ
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In the previous section we assume a put option whose price exposure is negative ( ), 

and volatility exposure is positive ( ), without any loss of generality. From that, we 

show that under the leverage effect from the negative correlation between volatility of the 

risky stock and its price shock (

0<sp

0>vp

0<ρ ), we will have two positive effects in the intertemporal 

hedging component for the option-based portfolio insurance:  the delta effect ( 0>σρ sp ) 

and the vega effect ( ). This implies that under the correlation effect (i.e. when the 

unexpected return on the risky stock is low (the market situation is bad) and the market 

uncertainty is high), the low unexpected return on the risky stock and the high uncertainty of 

the market states due to the high volatility of the risky stock will make a put option play a 

important role in the option-based portfolio insurance due to the delta effect and the vega 

effect, and a conservative investor will have a positive position on the intertemporal hedging 

demand of the option-based portfolio insurance strategy coming from these two effects by 

purchasing put options.  

02 >σvp

If a conservative investor does not introduce any put options into the option-based 

portfolio insurance and holds only the risky stock, then she will decrease the holdings of the 

risky stock via the intertermporal hedging component due to the leverage effect under high 

volatility accompany with low unexpected return on the risky stock. In this state, when future 

investment opportunities are worse, put options in the intertemporal hedging component of 

the option-based portfolio insurance become a more valuable hedging instrument for 

conservative long-term investors to hedge investment-opportunity risk coming from changes 

in the stochastic volatility. The relationships between these components with the degree of 

risk averse (γ ) are also seen in Figure 2. 

If one does not hold any put options, then the assumption of imperfect instantaneous 

correlation between risky stock returns and its stochastic volatility means that the 

intertemporal hedging component of the risky stock can only provide partial hedging ability 

for multi-period investors when facing the time-varying investment opportunity set. When we 

introduce non-redundant put options written on the risky stock in the incomplete financial 
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market to create option-based portfolio insurance strategies, the put options in the 

option-based portfolio insurance can provide differential exposure to the imperfect 

instantaneous correlation between volatility and stock returns, thus making the market 

complete. The intertemporal option-based portfolio insurance strategy can supplement the 

deficient hedging ability of the intertemporal hedging component of the risky asset, because 

of the non-linear nature of put options. Merton (1971, 1973) shows that dynamic hedging is 

necessary for forward-looking investors when investment opportunities are time-varying. In 

this paper we show that incorporating options’ considerations in portfolio decisions to create a 

dynamic option-based portfolio insurance strategy brings benefits of improvements to the 

hedging ability in the intertemporal hedging component, especially during down markets. 

5.  CONCLUSIONS 

In this paper we apply the intertemporal investment-consumption technique to discuss and 

explore the optimal dynamic option-based portfolio insurance strategy with stochastic 

volatility. We set up a model in which a long-term investor chooses an optional dynamic 

option-based portfolio insurance strategy by maximizing a utility function defined over 

intermediate consumption rather than terminal wealth, because many long-term investors 

desire to seek a stable consumption path with a long horizon. We show that the optimal 

dynamic option-based portfolio insurance strategy can be separated into two components:  

the myopic component and the intertemporal hedging component. The myopic component is 

simply linked to the risk-and-return tradeoff associated with price risk of the portfolio value 

under the option-based portfolio insurance. The intertemporal hedging component of the 

optimal dynamic option-based portfolio insurance is an affine function of the reciprocal of the 

time-varying volatility. 

We further separate the intertemporal hedging demand into three effects. Without 

introducing any put options to create option-based portfolio insurance, and holding only the 

risky stock, the intertemporal hedging component for the risky stock will consist of only the 

correlation effect. The negative instantaneous correlation between unexpected return on the 
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risky stock and its stochastic volatility implies the investor will have negative intertemporal 

hedging demand due to changes solely in the volatility of the risky stock, because of its lack 

of hedging ability against an increase in volatility. Under the leverage effect, we have two 

positive effects in the intertemporal hedging component for the dynamic option-based 

portfolio insurance:  the delta effect and the vega effect. From these two effects, a 

conservative investor will have a positive position on the intertemporal hedging demand of 

the option-based portfolio insurance strategy. This means when future investment 

opportunities are worse, put options in the intertemporal hedging component of the 

option-based portfolio insurance become a more valuable hedging instrument to hedge 

investment-opportunity risk coming from changes in the stochastic volatility. 

Merton (1971, 1973) shows that dynamic hedging is necessary for forward-looking 

investors when investment opportunities are time-varying. In this paper we further show that 

incorporating options’ considerations in portfolio decisions to create a dynamic option-based 

portfolio insurance strategy brings benefits of improvements to the hedging ability in the 

intertemporal hedging component, especially during down markets. 
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APPENDIX A 

The derivation of the special case for an optimal dynamic option-based portfolio 

insurance strategy when  1=ϕ
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The above ordinary differential equation has a solution of the form 

)logexp( 210 tt VQVQQI ++= , so (A1) can be expressed as:  
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 Rearranging the above equation, we have the following three equations for ,  and 2Q 1Q
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From equation (A3), we have: 
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From this result, we can get the indirect utility function and the optimal consumption rule 

and optimal dynamic option-based portfolio insurance strategy when 1=ϕ . 
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