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ABSTRACT 

This paper applies the option in the tax law to investigate the effect of taxation of 

capital gains on the optimal dynamic consumption and portfolio choice when there is 

predictable variation in return volatility. For a conservative investor, under the 

leverage effect with capital gains tax, we provide a negative after-tax leverage effect 

on the intertemporal hedging demand coming from pure changes of stochastic 

volatility with the assumption of the negative value of the instantaneous correlation 

between the unexpected return on the stock and its stochastic volatility. Moreover, in a 

bad market accompanied by high volatility under the leverage effect, a conservative 

investor will have a negative vega effect of the tax option on the intertemporal 

hedging demand coming from pure changes of stochastic volatility.  
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1. Introduction 

In the recent years, there has been some research exploring the optimal dynamic asset 

allocation strategies with various risks, such as volatility risk, interest risk or inflation 

risk. Merton (1971) was the first to consider the effect of a stochastic investment 

opportunity set in the analysis of optimal asset allocation strategies for long-horizon 

investors. However, a vast empirical literature in the 1990’s has demonstrated that some 

degree of asset return is predictable. Bollerslev, Chou and Kroner (1992), Campbell, Lo 

and MacKinlay (1997), and Campbell, Lettau, Malkiel and Xu (2001) have shown that 

stock market return volatility is not constant over time. Since then, academic 

economists have emerged studying the effects of return predictability on asset allocation 

strategies. Brennan, Schwartz and Lagnado (1997) and some of the recent research for 

this area explores models which examine the optimal dynamic asset allocation strategy 

when the state variable follows stochastic processes. However, there is a very limited 

literature on the capital gains taxes which apply to the optimal dynamic asset allocation 

strategies with time-varying volatility risk.  

While there are substantial differences across countries in both the level and 

structure of capital income taxes, investors in many countries are generally subject to 

a non-trivial amount of taxes. Whenever they sell securities they hold at a profit, one 

may think that the taxes on capital gains have an appreciable impact on an 

individual’s consumption and investment decisions. Therefore, taxes play an 

important role in the decision-making process of individuals concerning their 

consumption and investment plans. The taxation of returns on financial assets alters 

the benefits of saving for future consumption and thus affects the trade-off between 

current consumption and investment (Dammon, Spatt and Zhang, 2001). 

The purpose of this paper is applying the real option in the tax law to investigate 
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the effect of taxation of capital gains on the optimal dynamic consumption and 

portfolio choice with stochastic volatility. Computing the optimal consumption and 

portfolio policy of an investor subject to capital gains taxes is a challenging task. Our 

research contributes to the literature on optimal asset allocation by exploring precisely 

how capital gains taxes affect asset allocation with stochastic volatility. 

If asset returns or volatility are time-varying, this implies that investment 

opportunities are time-varying, too. Merton (1971, 1973) shows that when investment 

opportunities are time-varying, dynamic hedging is necessary for forward-looking 

investors. Multi-period or long-horizon investors are concerned not only with 

expected returns and risk today, but with ways in which expected returns and risk may 

change over time. Dynamic asset allocation strategies for multi-period or 

long-horizon investors differ from those of single-period investors because the former 

demand risky assets not only for their risk premia, but also for their hedging ability 

against adverse changes in future investment opportunities. Merton (1969, 1971, 1973) 

shows that if investment opportunities are varying overtime, then long-horizon 

investors generally care about shocks to investment opportunities and not just about 

wealth itself. They may seek to hedge their exposures to wealth shocks, and this 

creates intertemporal hedging demand for financial assets (Campbell, 2000).  

Recently, there has been some limited literature exploring and analyzing optimal 

dynamic portfolio choice with volatility risk (Liu, 2000, 2001 and Chacko and Viceira, 

2005). They solve for the optimal consumption and portfolio choice of long-horizon 

investors when there is predictable variation in stock market return volatility. 

However, there is no other research exploring both the effects of capital gains taxes 

and stochastic volatility on optimal portfolio choice. In addition, while various 

countries have their own tax laws, the tax laws in many countries usually create a 
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situation where the taxpayer’s payoff from a course of action resembles the payoff 

from writing a call option to the government. As a result of the call-like nature of the 

investor’s tax pay-off function, investors have an incentive to reduce their expected 

tax burdens. This incentive will result in the adjustment of optimal dynamic asset 

allocation strategies and the consumption rule. In addition, other things equal, the 

capital gains tax system generally imposes a high burden on more volatile investments 

than on less volatile investments with the same expected return. In other words, the 

tax system also imposes a higher burden when the market is more volatile. Investors 

can reduce their expected tax burdens by reducing the volatility of their capital gains. 

One way to reduce capital gains volatility is also through intertemporal hedging on 

the financial assets, especially when facing an environment with time-varying 

volatility. We find that multi-period investors value assets not only for their short-term 

risk-return characteristics, but also for their ability to hedge consumption against 

adverse shifts in future “after-tax” investment opportunities. Thus these investors have 

an extra demand for risky assets that reflects after-tax intertemporal hedging. 

In this generalized intertemporal model under the stochastic environment, 

Merton’s approach (1971, 1973) could not be used to derive a closed-form solution by 

solving a nonlinear differential equation on the intertemporal hedging portfolio. 

Recently however, some of the literature has begun to work on it, such as the 

approximate analytical solutions developed by Campbell and Viceira (2001), Kogan 

and Uppal (2001), and Chacko and Viceira (2005). These solutions are based on 

perturbations of known exact solutions. They offer analytical insights into investor 

behavior in models that fall outside the still limited class that can be solved exactly 

(Campbell, 2000). In this paper, we use perturbation methods to get linear approximate 

solutions. We mainly derived the explicit solution on a log-linear expansion of the 
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consumption-wealth ratio around its unconditional mean provided by Campbell (1993), 

Campbell and Viceira (1999, 2001 and 2002) and Chacko and Viceira (2005). 

This paper is organized as follows. Section II describes the model used and 

environment assumed in this paper. Section III develops the model of optimal 

consumption policy and dynamic asset allocation strategies with time-varying 

volatility and capital gains taxes. Section IV provides analyses of the model results 

and how capital gains taxes affect asset allocation with stochastic volatility. Finally, 

conclusions are given in Section V. 

2. The Model 

2.1 Investment Opportunity Set 

In this paper, we assume that the investor invests wealth in tradable assets only. There 

are two tradable assets available for trading in the economy. One of the assets is a 

riskless money market fund, denoted by  with a constant interest rate of tB r . Its 

instantaneous return is  

rdt
B

dB

t

t = .                                                    (1) 

The short rate is assumed to be constant and tax-free in order to focus on the 

stochastic volatility of the risky asset. The second tradable asset is a taxable risky 

stock.  denotes the price of the risky financial asset at time t; its instantaneous 

total return dynamics are given by  

tS

St
t

t dZVdt
S

dS
+=  μ ,                                           (2) 

where μ  is the instantaneous expected rate of return on the risky stock; and tV  is 

the time-varying instantaneous standard deviation of the return on the risky asset. We 

denote stochastic variables with a subscript “t”; and let the conditional variance of the 
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risky stock vary stochastically over time. From the following setting, the investment 

opportunity is time-varying. We assume that the instantaneous variance process is  

vttt dZVdtVdV σθκ +−= )( ,                                    (3) 

where the parameter 0>θ , which describes the long-term mean of the variance, 

)1 ,0(∈κ  is the reversion parameter of the instantaneous variance process, i.e. this 

parameter describes the degree of mean reversion.  and  are two Wiener 

processes with constant correlation 

SdZ vdZ

ρ . We assume that the stock returns are 

correlated with changes in volatility with instantaneous correlation ρ , which may be 

assumed to be negative to capture the leverage effect or the asymmetric effect 

(Glosten et al., 1993). The negative correlation assumption with the mean-reversion 

on stock returns volatility can capture two of the most important features discussed in 

the empirical literature on the equity market. 

Each monetary unit of stock sold at some time t is subject to the payment of an 

amount of tax computed according to the relative tax basis observed at the prior time. 

This paper assumes that the tax laws create a situation where the tax payer’s payoff 

from a course of action resembles the payoff from holding a call option. As a result of 

the call-like nature of the taxpayer’s tax function, and following Sircar and 

Papanicolaou (1999) and Liu and Pan (2003) and under the above setting, we assume 

the value of the real tax option ( ) which is the function (),( ttt VST τ= τ ) on the prices 

of the stock ( ) and on the volatility of stock returns ( ) at time , and will have 

the following price dynamics: 

tS tV t

vvtssttttvstt dZVdZSdtrTVSrdT τστλσττμ ++++−= V ])[( ,      (4) 

where λ  determines the stochastic volatility risk premium of the real tax option, and 

10 << sτ  and 0>vτ  are measures of the real tax option’s price sensitivity to small 
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changes in the underlying stock price and volatility, respectively. They measure the 

sensitivity of the real tax call option value to infinitesimal changes in the stock price 

and volatility, respectively. Specifically,  

),(

),(

tt VS
s s

vs
∂

∂
=

ττ ; 
),(

),(

tt VS
v v

vs
∂

∂
=

ττ . 

The real tax option written on the stock with the non-linear payoff structure 

 for some strike price , at +−= )(),( KSVS δδδτ 0>K δ<t , and the strike price K , 

in fact, is the investor’s tax basis for the risky asset observed at the prior time. Thus, 

the dynamics of the after-tax return on the risky stock ( ) would be  e
tS

[ ] [ ] vvtssttttttvstt
e
t dZVdZSVSVdtrTVSrSdS τσττλστμμ −−+−−−−=  )( .    (5) 

2.2 Preferences 

We assume that the investor’s preference is recursive and of the form described by 

Duffie and Epstein (1992). Recursive utility is a generalization of the standard and 

time-separable power utility function that separates the elasticity of intertemporal 

substitution of consumption from the relative risk aversion (Duffie and Epstein, 1992, 

Chacko and Viceira, 2005). This means that the power utility is just a special case of 

the recursive utility function when the elasticity of the intertemporal substitution is 

just the inverse of the relative risk aversion coefficient.  

] ),([
 

 
δδδ dJCfEJ

tt ∫
∞

= ,                                         (6) 

where  is a normalized aggregator of investor’s current consumption ( ) 

and utility has the following form:  

),( δδ JCf δC

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
−−=

−
−

−
1)

))1((
()1()11(),(

11
1

1
1

ϕ

γγ
γ

ϕ
β

J

CJJCf ,                   (7) 

where γ  is the coefficient of relative risk aversion, β  is the rate of time preference 
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and ϕ  is the elasticity of intertemporal substitution; they are all larger than zero.  

The investor’s objective is to maximize her expected lifetime utility by choosing 

consumption and the proportions of her wealth to invest in the two tradable assets 

subject to the following intertemporal budget constraint, 

dtCrWWr
S
rTV

SS
Sr

S
SndW ttte

t

t
te

t

v
se

t

t
e
t

t
tt ⎥

⎦

⎤
⎢
⎣

⎡
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−−−=

τλστμμ )(  

tve
t

v
tttsse

t

t
te

t

t
tt WdZ

S
VnWdZ

S
SV

S
SVn ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

τστ         ,                   (8) 

where  represents the investor’s total wealth, while  are the fractions of the 

investor’s financial wealth allocated to the risky stock at time t, and  represents 

the investor’s instantaneous consumption. 

tW tn

tC

3. Optimal Consumption Policy and Dynamic Asset Allocation Strategies with 

Time-Varying Volatility and Capital Gains Taxes 

The main objection of this paper is to explore the optimal dynamic asset allocation 

strategies with time-varying volatility and capital gains taxes. Instead of a single 

period result, we also want to explore the optimal intertemporal consumption with 

after-tax stochastic investment opportunity set induced by the stochastic volatility.  

3.1 A Special Case with Unit Elasticity of Intertemporal Substitution of Consumption  

The value function of the problem ( J ) is to maximize the investor’s expected lifetime 

utility. The principle of optimality leads to the following Bellman equation for the 

utility function. Under the above setting, the Bellman equation will satisfy 
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where ,  denote the derivatives of WJ .VJ J  with respect to wealth, W , and 

stochastic volatility, , respectively. We will use the similar notation for higher 

derivatives as well. We also note that 

tV

ρ  is the instantaneous correlation between the 

unexpected return on the stock and its stochastic volatility. 

The first-order conditions for the equation (9) are 

γ
ϕγ

γ
ϕγ

γβϕϕ −
−

−
−

−= − 1
1

1
1

)1(JJC Wt ,                                            (10) 

tvtsvtvststt

e
ttvst

tWW

W
t VSSSSS

SVSr
WJ

Jn
 ])(22[

 ])1()[(
222222 τσττσρτσττ

λσττμ
−−+−+

−−−
−=  

( )
)(22

        222222
vtsvtvststt

e
tvstt

tWW
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SSSSS
SSS
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J

τσττσρτσττ
σττρρσ

−−+−+
−−

− .              (11) 

The optimal dynamic asset allocation strategy has two major components. The first 

term is the mean-variance portfolio weight. This is for an investor who only invests in 

a single period horizon or under constant investment opportunity set, the myopic 

demand. The second term of the optimal dynamic portfolio allocation is the 

intertemporal hedging demand that characterizes demand arising from the desire to 

hedge against changes in the after-tax investment opportunity set induced by the 

stochastic volatility. This term is determined by the instantaneous rate of changes in 

relation to the value function.  

We will discuss this in more detail later, because the first-order conditions for our 
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problem are not explicit solutions unless we know the complicated indirect utility 

function. Substituting the first-order solutions back into the Bellman equation, we get 

[ ]
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We conjecture that there exists a solution of the functional form 
γ

γ

−
=

−

1
)(),(

1
t

ttt
WVIVWJ  

when 1=ϕ , and substitute it into equation (12), then the ordinary differential 

equation will have a solution of the form )logexp( 210 tt VQVQQI ++= . Rearranging 

that equation, we have three equations for ,  and  after collecting terms in 2Q 1Q 0Q

tV
1 ,  and 1. We provide the full details in Appendix. tV

We are now able to obtain the indirect utility function and the optimal 

consumption rule and dynamic asset allocation strategy with time-varying volatility 

and capital gains tax when 1=ϕ . The indirect utility function is 

( )
γγ

γγ

−
++=

−
=

−−

1
logexp

1
)(),(

1

210

1
t

tt
t

ttt
WVQVQQWVIVWJ .                      (13) 

The investor’s optimal consumption-wealth ratio and the optimal dynamic asset 

allocation strategy are 

β=
t

t

W
C ,                                                           (14) 

 9
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However, for the time being, we defer solving this model since this solution is 

merely a special case of our model setting when 1=ϕ . In the next section, we will 

use perturbation methods to find the general solution to our model.  

3.2 Approximate Closed-Form Solution by Perturbation Methods 

The basic idea behind the use of perturbation methods is that of formulating a general 

problem, on the condition that we find a particular case that has a known solution, and 

then using that particular case and its solution as a starting point for computing 

approximate solutions to nearby problems. In many financial economic models, 

determining the unknown function plays a key role in economic analysis under the 

assumption of a given functional form. However, the more generalized the model is, the 

more difficult it is to find a closed-form solution, especially in the case of an 

intertemporal consumption and portfolio choice problem with stochastic nonlinear 

partial differential equations. In spite of this, this situation has very recently begun to 

change as a result of several related developments. One of these developments has 

involved the use of perturbation methods in some special cases where solutions are 

derived for computing approximate solutions that will help make economic analysis 

more explicit. These methods offer analytical insights into investor behavior in models 

that fall outside the still-limited class that can be solved exactly (Campbell, 2000). 

Judd and Guu (1997, 2000), Kogan and Uppal (2001), Campbell and Viceira (1999, 

2001 and 2002), and Chacko and Viceira (2005) etc. have used this approach to solve 

dynamic economic or financial models. In the remainder of this paper, we will apply 
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perturbation methods to solve our model. In the context of our problem, the insight we 

obtain is that the solution for the recursive utility function when 1=ϕ  provides a 

convenient starting point for performing the expansion. We apply the 1=ϕ  in the 

previous section as our starting point and compute our model around this solution. 

Without the restriction of 1=ϕ , the Bellman equation can be expressed as the 

following equation by substituting equation (10) into equation (12) and conjecturing 

there exists a solution of the functional form 
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To simplify, we can make the transformation ϕ
γ
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following non-homogeneous ordinary differential equation, 
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Unfortunately, the above equation cannot be computed in closed form. Our approach 

is to obtain an asymptotic approximation to equation (17), where the expansion is by 

taking a log-linear expansion of the consumption-wealth ratio around its 

unconditional mean as shown in the papers of Campbell (1993), Campbell and 

Viceira (1999, 2001 and 2002) and Chacko and Viceira (2005). From the 

transformation ϕ
γ

−
−

−
Φ= 1

1 
)()( tt VVI , we can get the envelope condition of the equation 

(10), 

}exp{)}exp{log(1
tt

t

t

t

t wc
W
C

W
C

−≡=Φ= −ϕβ .                          (18) 

Then, using a first-order Taylor expansion of }exp{ tt wc −  around the expectation of 

, we can write  )( tt wc −

[ ]

  )()}(exp{)}(1{)}(exp{            

)()()}(exp{)}(exp{1

tttttttt

tttttttt

wcwcEwcEwcE

wcEwcwcEwcE

−⋅−+−−⋅−=

−−−⋅−+−≈Φ−ϕβ
 

)(            1 0 tt wc −+≡ φφ .                                        (19) 

Substituting equation (19) into the equation (17) and guessing this equation has a 

solution of the form , and from this guessed 

solution, equation (18) can find that  

)logˆˆˆexp()( 210 ttt VQVQQV ++=Φ

})]logˆˆˆ[exp(log{ )( 1
210

−++=− tttt VQVQQwc ϕβ  

tt VQVQQ logˆˆˆlog              210 −−−= βϕ .                                (20) 

As such, we can express equation (17) as 
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Rearranging the above equation, we have the following three equations for ,  and ,  2Q̂ 1Q̂ 0Q̂
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where  can be solved to the quadratic equation (22),  can be solved to the 

equation (23) given , and  can be solved to the equation (24), given  and 

. 

2Q̂ 1Q̂

2Q̂ 0Q̂ 2Q̂

1Q̂

As such, we can now get the indirect utility function and the optimal consumption 

rule and the optimal dynamic asset allocation strategy with capital gains tax in the 

stochastic environment without constraint when 1=ϕ .  

The indirect utility function is 
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=
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The investor’s optimal instantaneous consumption-wealth ratio is 

( tt
t

t VQVQQ
W
C logˆˆˆ exp 210 −−−= ϕβ ).                                    (26) 

The optimal dynamic asset allocation strategy with capital gains tax is 
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Now we have explicitly solved the problem of the dynamic asset allocation 

strategy for long-horizon investors with time-varying volatility and capital gains tax. 

In the next section, we will provide analyses of our results. 

4. Analyses of the Model Results and How Capital Gains Taxes Affect Asset 

Allocation with Stochastic Volatility 

The optimal dynamic asset allocation strategy can be separated into two components: 

the myopic component, and the intertemporal hedging component. First, the 

dependence of the myopic component is simple. It is an affine function of the 

reciprocal of the time-varying volatility and decreases with the coefficient of relative 

risk aversion. Since volatility is time varying, the myopic component is time varying, 

too. In other words, the myopic component is simply linked to the after-tax 

risk-and-return tradeoff associated with price risk. The higher the capital gains tax rate 

would lead to the higher delta of the real tax option ( ), and this will decrease the 

after-tax return. And hence decrease the myopic component in the optimal dynamic 

asset allocation for the risky stock. In addition, we know that the capital gains tax 

system imposes a higher burden on more volatile risky stock than on less risky stock 

with the same expected return. This paper shows this phenomenon by the vega of the 

real tax option. The higher the vega of the real tax option, (i.e. the higher the 

sensitivity of the tax burden to infinitesimal changes on the stock return volatility) 

accompanied by the , the higher the increase of the tax burden with respect to 

sτ

0>vτ
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the increase in the stock return volatility, and the lower the after-tax return on the 

risky stock will be. And hence the investor will decrease the myopic component of the 

asset allocation on the risky stock.  

The intertemporal hedging component of the optimal dynamic asset allocation is 

an affine function of the reciprocal of the time-varying volatility, with coefficient ϕ−1
ˆ

1Q  

and ϕ−1
ˆ

2Q . While  is the solution to the quadratic equation (22),  is the solution 

to the equation (23) given , and  is the solution to the equation (24), given 

 and . When 

2Q̂ 1Q̂

2Q̂ 0Q̂

1Q̂ 2Q̂ 1>γ  for the coefficient , the equation (22) has two real 

roots of opposite signs according to the quadratic equation theory. And the value 

function 

2Q̂

J  is maximized only with the solution associated with the negative root of 

the discriminant of the quadratic equation (22), i.e. the positive root of equation (22). 

It can immediately be shown that 01
ˆ

2 >−ϕ
Q . 

Since 01
ˆ

2 >−ϕ
Q , it means that the sign of the coefficient of the intertemporal 

hedging demand coming from pure changes in time-varying volatility is positive 

when 1>γ . We can further separate the intertemporal hedging demand into three 

effects. First, if we don’t introduce any capital gains tax consideration, and instead the 

holding stock is tax-free, the intertemporal hedging component for the risky stock will 

consist of only the correlation effect or leverage effect ( ρσ ). The intertemporal 

hedging component of the optimal asset allocation for risky stock without capital 

gains tax is affected by the instantaneous correlation between the unexpected return 

and changes in stochastic volatility of the risky stock ( ρ ). If 0<ρ , it means that the 

unexpected return on the risky asset is low (the market situation is bad), and then the 

states of the market uncertainty will be high. Since 01
ˆ

2 >−ϕ
Q  when 1>γ , the negative 
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instantaneous correlation between unexpected return on the risky stock and its 

stochastic volatility implies the investor will have negative intertemporal hedging 

demand due to changes solely in the volatility of the risky asset, which lacks the 

hedging ability against an increase in volatility. Similar discussions are found in Liu 

(2001) and Chacko and Viceira (2005). However, in our generalized model, the 

consideration of capital gains tax with time-varying volatility complicates the 

intertemporal hedging component on asset allocation for long-horizon investors. 

In the previous section we assume a real tax option whose price exposure is 

positive ( 0>sτ ), and volatility exposure is positive ( 0>vτ ), without any loss of 

generality. From that, we show that under the leverage effect from the negative 

correlation between volatility of the risky stock and its price shock ( 0<ρ ), we will 

have two capital gains tax effects in the intertemporal hedging component for the 

risky stock, the tax-option delta effect ( 0>− σρτ s ), and the tax-option vega effect 

( ). This implies that under the correlation effect (i.e. when the unexpected 

return on the risky stock is low (the market situation is bad), and the market 

uncertainty is high), the low unexpected 

02 <− στ v

return on the risky stock and the high 

uncertainty of the market states due to the high volatility of the risky stock will make 

capital gains tax play a important role in the intertemporal hedging demand due to the 

delta effect and the vega effect, and a conservative investor will have a positive 

component on the intertemporal hedging demand coming from the tax-option delta 

effect, and a negative component on the intertemporal hedging demand coming from 

the tax-option vega effect. For a conservative investor, if she doesn’t impose any tax 

and holds only the risky stock, she will decrease the holdings of the risky stock via the 

intertermporal hedging component due to the leverage effect under high volatility 

accompanied by low unexpected return on the risky stock.  
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However, under the leverage effect with capital gains tax, the negative 

intertemporal hedging component will be partially offset by the positive delta effect of 

the real tax option for 10 << sτ . The net leverage effect, which we term “the after-tax 

leverage effect”, on the intertemporal hedging demand coming from pure changes of 

stochastic volatility is ρστ )1( s− . This component of the intertemporal hedging 

demand is also negative for the assumption of the negative value of the instantaneous 

correlation between the unexpected return on the stock and its stochastic volatility 

( ρ ). The consideration of the capital gains tax will decrease the absolute value of this 

component. The positive delta effect on tax option ( ρστ s− ) is intuitive because under 

the leverage effect, i.e. the low unexpected returns on the risky stock with the high 

return volatility on the risky stock, the increase of the holding of the stock will not 

increase tax burden, under the bad market. Therefore, the capital gains tax effect will 

provide some offset effect on the leverage effect of the negative intertemporal hedging 

demand.  

However, due to the bad market accompanied by high volatility under the 

leverage effect, a conservative investor will have an negative vega effect of the tax 

option on the intertemporal hedging demand coming from pure changes of stochastic 

volatility ( ) for 2στ v− 0>vτ . This result is that when the capital gains tax imposes a 

high burden on more volatile investments than on less volatile investment with the 

same expected return, it will tend to cause investors to allocate their capital to flow 

away from risky stocks and toward riskless bonds. Therefore, we will have an extra 

negative intertemporal hedging demand from the vega effect of tax option.  

5.  Conclusions 

Although various countries have their own tax laws, the tax laws in many countries 
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usually create a situation where the taxpayer’s payoff from a course of action 

resembles the payoff from writing a call option to the government. As a result of the 

call-like nature of the investor’s tax pay-off function, investors have an incentive to 

reduce their expected tax burdens. This incentive will result in the adjustment of 

optimal dynamic asset allocation strategies and consumption rule. The purpose of this 

paper is applying the real option in the tax law to investigate the effect of taxation of 

capital gains on the optimal dynamic consumption and portfolio choice with 

stochastic volatility. Our research contributes to the literature on optimal asset 

allocation by exploring precisely how capital gains taxes affect asset allocation with 

stochastic volatility. 

The optimal dynamic asset allocation strategy can be separated into two 

components: the myopic component, and the intertemporal hedging component. The 

myopic component is simply linked to the after-tax risk-and-return tradeoff associated 

with price risk. We can further separate the intertemporal hedging demand explicitly. 

For a conservative investor, if she doesn’t impose any tax and holds only the risky 

stock, she will decrease the holdings of the risky stock via the intertermporal hedging 

component due to the leverage effect under high volatility accompanied by low 

unexpected return on the risky stock. However, under the leverage effect with capital 

gains tax, the negative intertemporal hedging component will be partially offset by the 

positive delta effect of the real tax option. The net leverage effect, which we call “the 

after-tax leverage effect” on the intertemporal hedging demand coming from pure 

changes of stochastic volatility is also negative under the assumption of the negative 

value of the instantaneous correlation between the unexpected return on the stock and 

its stochastic volatility.  

In this paper, we show that a bad market accompanied by high volatility under 

 19



the leverage effect, a conservative investor will have a negative vega effect of the tax 

option on the intertemporal hedging demand coming from pure changes of stochastic 

volatility. This result is that when the capital gains tax imposes a high burden on more 

volatile investments than on less volatile investments with the same expected return, 

this will tend to cause investors to reallocate their capital away from risky stocks and 

toward riskless bonds. Therefore, we will have an extra negative intertemporal 

hedging demand from the vega effect of tax option.  
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Appendix 

The derivation of the special case for optimal dynamic asset allocation strategy with 

capital gains tax and time-varying volatility when 1=ϕ  

We conjecture there exists a solution of the functional form 
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The above ordinary differential equation has a solution of the form 

)logexp( 210 tt VQVQQI ++= , so (A1) can be expressed as  
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 Rearranging the above equation, we have the following three equations for ,  2Q 1Q
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and ,  0Q
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From equation (A3), we have: 
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From this result, we can get the indirect utility function and the optimal consumption 

rule and optimal dynamic asset allocation strategy when 1=ϕ . 

 23



References 

Barberis, N. C., 2000, Investing for the long run when returns are predictable, Journal 

of Finance, 55, pp.225–264. 

Bollerslev, T., R. Y. Chou and K. Kroner, 1992, ARCH modeling in finance, Journal 

of Econometrics, 52, pp.5–59. 

Brennan, M. J., E. S. Schwartz, and R. Lagnado, 1997, Strategic asset allocation, 

Journal of Economic Dynamics and Control, 21, pp.1377–1403. 

Campbell, J. Y., 1993, Intertemporal asset pricing without consumption data, 

American Economic Review, 83, pp.487–512. 

Campbell, J. Y., and L. M. Viceira, 1999, Consumption and portfolio decisions when 

expected returns are time varying, Quarterly Journal of Economics, 114, 

pp.433–495. 

Campbell, J. Y., and L. M. Viceira, 2001, Who should buy long-term bonds? 

American Economic Review, 91, pp.99–127. 

Campbell, J. Y., and L. M. Viceira, 2002, Strategic Asset Allocation: Portfolio Choice 

for Long-Tem Investors (Oxford University Press, Oxford, U.K). 

Campbell, J. Y., 2000, Asset pricing at the millennium, Journal of Finance, 55, 

pp.1515–1567. 

Campbell, J. Y., M. Lettau, B. G. Malkiel and Y. Xu, 2001, Have individual stocks 

become more volatile? an empirical exploration of idiosyncratic risk, Journal of 

Finance, 56, pp.1–44. 

Campbell, J. Y., A. W. Lo and A. C. MacKinlay, 1997, The Econometrics of Financial 

Markets (Princeton University Press, Princeton, NJ). 

Chacko, G., and L. Viceira, 2005, Dynamic consumption and portfolio choice with 

stochastic volatility in incomplete markets. Review of Financial Studies, 18, 

 24



pp.1369-1402. 

Dammon, R., C. Spatt and H. Zhang, 2001, Optimal consumption and investment 

with capital gains taxes, Review of Financial Studies, 14, pp.583–616.  

Dammon, R., C. Spatt and H. Zhang, 2004, Optimal asset location and allocation with 

taxable and tax-deferred investing, Journal of Finance, 59, pp.999–1037. 

Duffie, D., and L. G. Epstein, 1992, Asset pricing with stochastic differential utility, 

Review of Financial Studies, 5, pp.411–436. 

Glosten, L. R., R. Jagannathan and D. Runkle, 1993, On the relation between the 

expected value and the volatility of the nominal excess return on stocks, Journal 

of Finance, 48, pp.1779–1801. 

Judd, K. L., 1998, Numerical Methods in Economics (MIT Press, Cambridge, MA). 

Judd, K. L., and S. M. Guu, 1997, Asymptotic methods for aggregate growth models, 

Journal of Economic Dynamics and Control, 21, pp.1025–1042. 

Judd, K. L., and S. M. Guu, 2000, The economic effects of new assets: an asymptotic 

approach, Working Paper (Hoover Institution, Stanford University). 

Kogan, L., and R. Uppal, 2001, Risk aversion and optimal portfolio policies in partial 

and general equilibrium economies, NBER Working Paper, No. w8609. 

Liu, J., and J. Pan, 2003, Dynamic derivative strategies, Journal of Financial 

Economics, 69, pp.401–430. 

Liu, J., 2001, Dynamic portfolio choice and risk aversion, Working Paper (University 

of California, Los Angeles). 

Liu, J., 2000, Portfolio selection in stochastic environments, Working Paper 

(University of California, Los Angeles). 

Merton, R. C., 1969, Lifetime portfolio selection under uncertainty: The continuous 

time case, Review of Economics and Statistics, 51, pp.247–257. 

 25



Merton, R. C., 1971, Optimum consumption and portfolio rules in a continuous-time 

model, Journal of Economic Theory, 3, pp.373–413. 

Merton, R. C., 1973, An intertemporal capital asset pricing model, Econometrica, 41, 

pp.867–87. 

Sircar, K. R., and G. C. Papanicolaou, 1999, Stochastic volatility, smile and 

asymptotics, Applied Mathematical Finance, 6, pp.107–145. 

 

 26


